| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 22901 |
\begin{align*}
y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.547 |
|
| 22902 |
\begin{align*}
y \ln \left (y\right )+y^{\prime } x&=1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
7.550 |
|
| 22903 |
\begin{align*}
\frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.568 |
|
| 22904 |
\begin{align*}
x \ln \left (x \right )+y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.579 |
|
| 22905 |
\begin{align*}
3 t +\left (t -4 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.580 |
|
| 22906 |
\begin{align*}
\left (-1+3 x +y\right )^{2} y^{\prime }-\left (-1+2 y\right ) \left (4 y+6 x -3\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.582 |
|
| 22907 |
\begin{align*}
y^{\prime }&=t y^{3} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.587 |
|
| 22908 |
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.589 |
|
| 22909 |
\begin{align*}
y^{\prime }&=\frac {x \left (-x^{2}+2 x^{2} y-2 x^{4}+1\right )}{y-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.589 |
|
| 22910 |
\begin{align*}
y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )}&=\sqrt {y \left (1-y\right ) \left (1-a y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.592 |
|
| 22911 |
\begin{align*}
2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.592 |
|
| 22912 |
\begin{align*}
3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.592 |
|
| 22913 |
\begin{align*}
y^{\prime }&=-y^{2} {\mathrm e}^{-t^{2}} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.598 |
|
| 22914 |
\begin{align*}
\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 x^{2} y^{3}+x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.599 |
|
| 22915 |
\begin{align*}
y^{\prime \prime }+\alpha ^{2} y&=1 \\
y^{\prime }\left (0\right ) &= \alpha \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
7.611 |
|
| 22916 |
\begin{align*}
y y^{\prime \prime }&=-{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.616 |
|
| 22917 |
\begin{align*}
1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.621 |
|
| 22918 | \begin{align*}
c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 7.624 |
|
| 22919 |
\begin{align*}
\ln \left (y\right ) x +y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.629 |
|
| 22920 |
\begin{align*}
2 x \left (x^{3} y+1\right ) y^{\prime }+\left (3 x^{3} y-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.631 |
|
| 22921 |
\begin{align*}
x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.634 |
|
| 22922 |
\begin{align*}
y^{\prime }&=\frac {2 a \left (-y^{2}+4 a x -1\right )}{-y^{3}+4 a x y-y-2 y^{6} a +24 y^{4} a^{2} x -96 y^{2} a^{3} x^{2}+128 a^{4} x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.635 |
|
| 22923 |
\begin{align*}
2 y x -\tan \left (y\right )+\left (x^{2}-x \sec \left (y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.641 |
|
| 22924 |
\begin{align*}
\left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
7.649 |
|
| 22925 |
\begin{align*}
y^{\prime }-\frac {3 y}{x}&=x^{4} y^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.656 |
|
| 22926 |
\begin{align*}
x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.657 |
|
| 22927 |
\begin{align*}
y^{\prime }&=\frac {x}{y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.668 |
|
| 22928 |
\begin{align*}
\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.670 |
|
| 22929 |
\begin{align*}
y^{\prime } y&=-x \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.671 |
|
| 22930 |
\begin{align*}
x^{\prime }&=\frac {3 x^{{1}/{3}}}{2} \\
x \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.672 |
|
| 22931 |
\begin{align*}
2 x \left (1-x \right ) y^{\prime }+x +\left (1-x \right ) y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.674 |
|
| 22932 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.682 |
|
| 22933 |
\begin{align*}
y^{\prime }&=\tan \left (y\right ) \cot \left (x \right )-\sec \left (y\right ) \cos \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
7.684 |
|
| 22934 |
\begin{align*}
x \left (y x -3\right ) y^{\prime }+x y^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.687 |
|
| 22935 |
\begin{align*}
y^{\prime }&=-\frac {-\frac {1}{x}-\textit {\_F1} \left (y+\frac {1}{x}\right )}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.688 |
|
| 22936 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.705 |
|
| 22937 | \begin{align*}
x \left (x^{3}+y^{5}\right ) y^{\prime }&=\left (x^{3}-y^{5}\right ) y \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 7.714 |
|
| 22938 |
\begin{align*}
\left (y-4 x -1\right )^{2}-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.717 |
|
| 22939 |
\begin{align*}
x \left (y x -2\right ) y^{\prime }+x^{2} y^{3}+x y^{2}-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.721 |
|
| 22940 |
\begin{align*}
y^{2}+\left (3 y x +y^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.721 |
|
| 22941 |
\begin{align*}
x^{2} y^{\prime }+\cos \left (2 y\right )&=1 \\
y \left (\infty \right ) &= \frac {10 \pi }{3} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
7.723 |
|
| 22942 |
\begin{align*}
{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.723 |
|
| 22943 |
\begin{align*}
x^{2} y^{\prime \prime }+2 x^{2} f \left (x \right ) y^{\prime }+\left (x^{2} \left (f^{\prime }\left (x \right )+f \left (x \right )^{2}+a \right )-v \left (v -1\right )\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.724 |
|
| 22944 |
\begin{align*}
2 \left (x^{2}+x +1\right ) y^{\prime }&=1+8 x^{2}-\left (2 x +1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.728 |
|
| 22945 |
\begin{align*}
y^{\prime } y&=\sqrt {y^{2}+x^{2}}-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.731 |
|
| 22946 |
\begin{align*}
y^{\prime }&=t^{2}+y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.737 |
|
| 22947 |
\begin{align*}
\left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.743 |
|
| 22948 |
\begin{align*}
\left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y-\left (\sin \left (\frac {y}{x}\right ) y-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.743 |
|
| 22949 |
\begin{align*}
{\mathrm e}^{\frac {y}{x}} x +y&=y^{\prime } x \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.744 |
|
| 22950 |
\begin{align*}
x^{\prime }&=-\frac {t}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.745 |
|
| 22951 |
\begin{align*}
y^{\prime }&=\sqrt {y \left (1-y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.750 |
|
| 22952 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.751 |
|
| 22953 |
\begin{align*}
y^{\prime }&=-\frac {2 a}{-y-2 a -2 a y^{4}+16 y^{2} a^{2} x -32 a^{3} x^{2}-2 y^{6} a +24 y^{4} a^{2} x -96 y^{2} a^{3} x^{2}+128 a^{4} x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.754 |
|
| 22954 |
\begin{align*}
y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.754 |
|
| 22955 |
\begin{align*}
y^{\prime }&=\frac {2 a}{-x^{2} y+2 a y^{4} x^{2}-16 y^{2} a^{2} x +32 a^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.757 |
|
| 22956 |
\begin{align*}
y^{\prime } x -y-\sqrt {y^{2}+x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.758 |
|
| 22957 | \begin{align*}
\left (x +2 x^{2} y\right ) y^{\prime }-x^{2} y^{3}+2 x y^{2}+y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 7.770 |
|
| 22958 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.770 |
|
| 22959 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }+y^{\prime } x +\frac {y}{x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
7.770 |
|
| 22960 |
\begin{align*}
\left (y^{2}+x^{2}\right ) f \left (\frac {x}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.771 |
|
| 22961 |
\begin{align*}
y^{\prime } x&=y-x \left (x -y\right ) \sqrt {y^{2}+x^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.773 |
|
| 22962 |
\begin{align*}
x \left (1-x^{2} y^{4}\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.773 |
|
| 22963 |
\begin{align*}
y^{\prime }&=\frac {y}{x \left (-1+y x +x y^{3}+y^{4} x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.779 |
|
| 22964 |
\begin{align*}
y^{\prime }&=t \sqrt {1-y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.780 |
|
| 22965 |
\begin{align*}
y^{\prime }-y^{2}-x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.783 |
|
| 22966 |
\begin{align*}
y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{2}}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
7.784 |
|
| 22967 |
\begin{align*}
y^{\prime }&=\frac {x \left (-x -1+x^{2}-2 x^{2} y+2 x^{4}\right )}{\left (x^{2}-y\right ) \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.795 |
|
| 22968 |
\begin{align*}
2 \left (2 a -y\right ) y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.795 |
|
| 22969 |
\begin{align*}
y x +\left (x^{2}-3 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.797 |
|
| 22970 |
\begin{align*}
{x^{\prime }}^{2}&=x^{2}+t^{2}-1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.807 |
|
| 22971 |
\begin{align*}
y^{\prime } x +y \left (1+y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.810 |
|
| 22972 |
\begin{align*}
y^{\prime }&=-\frac {x +y}{3 x +3 y-4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.812 |
|
| 22973 |
\begin{align*}
x^{\prime }&=6 t \left (x-1\right )^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.812 |
|
| 22974 |
\begin{align*}
i^{\prime \prime }+2 i^{\prime }+3 i&=\left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \\
i \left (0\right ) &= 8 \\
i^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✗ |
✓ |
✗ |
7.818 |
|
| 22975 |
\begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.831 |
|
| 22976 |
\begin{align*}
x y^{\prime } y&=y^{2}+x \sqrt {4 x^{2}+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.845 |
|
| 22977 | \begin{align*}
x \left (x -y\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 7.846 |
|
| 22978 |
\begin{align*}
y^{\prime }&=25+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.856 |
|
| 22979 |
\begin{align*}
y x -\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.856 |
|
| 22980 |
\begin{align*}
x^{2}+y^{2}+3 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.857 |
|
| 22981 |
\begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=x^{2}+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.862 |
|
| 22982 |
\begin{align*}
y {y^{\prime }}^{2}&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.864 |
|
| 22983 |
\begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (-2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.864 |
|
| 22984 |
\begin{align*}
x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.876 |
|
| 22985 |
\begin{align*}
x^{\prime \prime }&=x^{3}-x \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
7.876 |
|
| 22986 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}+2 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.879 |
|
| 22987 |
\begin{align*}
y^{\prime }&=f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.884 |
|
| 22988 |
\begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.887 |
|
| 22989 |
\begin{align*}
{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.891 |
|
| 22990 |
\begin{align*}
x \left (y^{2}-3 x \right ) y^{\prime }+2 y^{3}-5 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.892 |
|
| 22991 |
\begin{align*}
y^{\prime }&=\frac {1+2 y}{x \left (-2+x +x y^{2}+3 x y^{3}+2 y x +2 y^{4} x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.892 |
|
| 22992 |
\begin{align*}
y^{\prime }&=y^{3}-3 y^{2} x^{2}+3 x^{4} y-x^{6}+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.892 |
|
| 22993 |
\begin{align*}
\left (x \sqrt {1+x^{2}+y^{2}}-y \left (y^{2}+x^{2}\right )\right ) y^{\prime }-y \sqrt {1+x^{2}+y^{2}}-\left (y^{2}+x^{2}\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.895 |
|
| 22994 |
\begin{align*}
y^{\prime }&=\frac {\left (t +1\right )^{2}}{\left (1+y\right )^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.899 |
|
| 22995 |
\begin{align*}
a^{2} {y^{\prime \prime }}^{2}&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.900 |
|
| 22996 | \begin{align*}
y^{\prime }&=\frac {\left (x -y\right )^{2} \left (x +y\right )^{2} x}{y} \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 7.901 |
|
| 22997 |
\begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.906 |
|
| 22998 |
\begin{align*}
y^{\prime }&=\frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.907 |
|
| 22999 |
\begin{align*}
x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.908 |
|
| 23000 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {x^{2}+y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.912 |
|