| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 21301 |
\begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.292 |
|
| 21302 |
\begin{align*}
y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.293 |
|
| 21303 |
\begin{align*}
y^{\prime }-5 y&=3 x^{3}+4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.293 |
|
| 21304 |
\begin{align*}
x y^{\prime } y&=x^{2}+3 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.296 |
|
| 21305 |
\begin{align*}
\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.296 |
|
| 21306 |
\begin{align*}
\sin \left (3 x \right )+2 y \cos \left (3 x \right )^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.296 |
|
| 21307 |
\begin{align*}
\left (x +x \cos \left (y\right )\right ) y^{\prime }-\sin \left (y\right )-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.297 |
|
| 21308 |
\begin{align*}
y^{\prime } y&=\sqrt {y^{2}+x^{2}}-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.299 |
|
| 21309 |
\begin{align*}
x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.300 |
|
| 21310 |
\begin{align*}
x^{2} y^{\prime }&=a +b x y+c \,x^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.303 |
|
| 21311 |
\begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.303 |
|
| 21312 |
\begin{align*}
x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.303 |
|
| 21313 |
\begin{align*}
y^{\prime }&=\sqrt {y}\, \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.303 |
|
| 21314 |
\begin{align*}
4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.304 |
|
| 21315 |
\begin{align*}
y^{\prime } \sqrt {b \,x^{4}+a \,x^{2}+1}+\sqrt {1+a y^{2}+b y^{4}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.304 |
|
| 21316 |
\begin{align*}
z^{\prime \prime }+g z&=0 \\
z \left (\frac {\pi }{3 \sqrt {g}}\right ) &= 5 \\
z \left (\frac {2 \pi }{3 \sqrt {g}}\right ) &= \frac {\pi }{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.304 |
|
| 21317 |
\begin{align*}
1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.306 |
|
| 21318 | \begin{align*}
y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right )&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 4.306 |
|
| 21319 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }-y x +a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.306 |
|
| 21320 |
\begin{align*}
y^{\prime }&=x \sqrt {1-y^{2}} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.309 |
|
| 21321 |
\begin{align*}
y^{\prime }&=2 t y^{2}+3 t^{2} y^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.309 |
|
| 21322 |
\begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.312 |
|
| 21323 |
\begin{align*}
y^{\prime } x +y&=-2 x^{6} y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| 21324 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| 21325 |
\begin{align*}
x^{2} y^{\prime }&=\left (a x +y^{3} b \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.315 |
|
| 21326 |
\begin{align*}
\left (2 x +2 y+1\right ) y^{\prime }&=x +y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.315 |
|
| 21327 |
\begin{align*}
2 y x +y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.316 |
|
| 21328 |
\begin{align*}
1+\sin \left (y\right )&=\left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.317 |
|
| 21329 |
\begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.318 |
|
| 21330 |
\begin{align*}
2 x -y \sin \left (2 x \right )&=\left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.318 |
|
| 21331 |
\begin{align*}
y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.319 |
|
| 21332 |
\begin{align*}
y^{\prime }&=\frac {y^{2}-1}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.319 |
|
| 21333 |
\begin{align*}
2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.322 |
|
| 21334 |
\begin{align*}
\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.323 |
|
| 21335 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.324 |
|
| 21336 |
\begin{align*}
2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.326 |
|
| 21337 |
\begin{align*}
2 x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.328 |
|
| 21338 | \begin{align*}
x +y+1-\left (2 x +2 y+1\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.329 |
|
| 21339 |
\begin{align*}
x \left (x +y\right ) y^{\prime }&=y \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.330 |
|
| 21340 |
\begin{align*}
x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.330 |
|
| 21341 |
\begin{align*}
y^{\prime } x&=y+2 \,{\mathrm e}^{-\frac {y}{x}} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.333 |
|
| 21342 |
\begin{align*}
y^{\prime }&=\frac {y-x y^{2}}{x +x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.333 |
|
| 21343 |
\begin{align*}
\sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=\cot \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.335 |
|
| 21344 |
\begin{align*}
y^{\prime }-\cos \left (b x +a y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.338 |
|
| 21345 |
\begin{align*}
-y+y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.339 |
|
| 21346 |
\begin{align*}
y^{\prime }-y&=\frac {\left (x +1\right ) {\mathrm e}^{4 x}}{\left ({\mathrm e}^{x}+y\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.342 |
|
| 21347 |
\begin{align*}
y^{\prime }+2 y x&=x \,{\mathrm e}^{-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.342 |
|
| 21348 |
\begin{align*}
y-2 y^{\prime } x -y {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.343 |
|
| 21349 |
\begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.343 |
|
| 21350 |
\begin{align*}
{y^{\prime }}^{2}+a y+b \,x^{2}&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
4.346 |
|
| 21351 |
\begin{align*}
\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.347 |
|
| 21352 |
\begin{align*}
y^{\prime }&=-\frac {x +2 y}{y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.347 |
|
| 21353 |
\begin{align*}
y^{\prime } y^{\prime \prime }&=a^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.351 |
|
| 21354 |
\begin{align*}
2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.352 |
|
| 21355 |
\begin{align*}
x \left (x +6 y^{2}\right ) y^{\prime }+y x -3 y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.356 |
|
| 21356 |
\begin{align*}
2 x -2 \,{\mathrm e}^{y x} \sin \left (2 x \right )+{\mathrm e}^{y x} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{y x} x \cos \left (2 x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.356 |
|
| 21357 | \begin{align*}
y^{\prime } x&=y+2 \sqrt {y x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.359 |
|
| 21358 |
\begin{align*}
y^{\prime }&=x +\left (1-2 x \right ) y-\left (1-x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.359 |
|
| 21359 |
\begin{align*}
y^{\prime \prime }&=6 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.359 |
|
| 21360 |
\begin{align*}
2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (\cos \left (y\right ) t^{2}+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.362 |
|
| 21361 |
\begin{align*}
y^{\prime }&=\frac {x^{2} {\mathrm e}^{\frac {y}{x}}+y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.362 |
|
| 21362 |
\begin{align*}
y^{\prime }&=\frac {y \tan \left (\frac {y}{x}\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.363 |
|
| 21363 |
\begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.364 |
|
| 21364 |
\begin{align*}
1+\ln \left (x \right )+\left (1+\ln \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.364 |
|
| 21365 |
\begin{align*}
\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.365 |
|
| 21366 |
\begin{align*}
y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.369 |
|
| 21367 |
\begin{align*}
x^{3} y^{\prime }&=y \left (y+x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.371 |
|
| 21368 |
\begin{align*}
y^{\prime } x&=y \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.371 |
|
| 21369 |
\begin{align*}
a x y^{\prime }+2 y&=x y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.372 |
|
| 21370 |
\begin{align*}
y^{\prime } x +x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.372 |
|
| 21371 |
\begin{align*}
y x +\left (y^{2}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.376 |
|
| 21372 |
\begin{align*}
y^{\prime } x&=x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.376 |
|
| 21373 |
\begin{align*}
y^{2}+2 t y y^{\prime }+3 t^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.376 |
|
| 21374 |
\begin{align*}
x_{1}^{\prime }&=9 x_{1}+13 x_{2}-13 x_{6} \\
x_{2}^{\prime }&=-14 x_{1}+19 x_{2}-10 x_{3}-20 x_{4}+10 x_{5}+4 x_{6} \\
x_{3}^{\prime }&=-30 x_{1}+12 x_{2}-7 x_{3}-30 x_{4}+12 x_{5}+18 x_{6} \\
x_{4}^{\prime }&=-12 x_{1}+10 x_{2}-10 x_{3}-9 x_{4}+10 x_{5}+2 x_{6} \\
x_{5}^{\prime }&=6 x_{1}+9 x_{2}+6 x_{4}+5 x_{5}-15 x_{6} \\
x_{6}^{\prime }&=-14 x_{1}+23 x_{2}-10 x_{3}-20 x_{4}+10 x_{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.377 |
|
| 21375 |
\begin{align*}
\left (1-2 \sin \left (x \right )\right ) y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
4.382 |
|
| 21376 | \begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\
y \left (3\right ) &= 4 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.384 |
|
| 21377 |
\begin{align*}
5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.384 |
|
| 21378 |
\begin{align*}
x^{\prime }+x \tan \left (t \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.384 |
|
| 21379 |
\begin{align*}
y-4 \left (x +y^{6}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.385 |
|
| 21380 |
\begin{align*}
y^{\prime }&=t^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.385 |
|
| 21381 |
\begin{align*}
x^{4}+y^{4}-x y^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.387 |
|
| 21382 |
\begin{align*}
{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.392 |
|
| 21383 |
\begin{align*}
t x^{\prime \prime }&=x \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
4.394 |
|
| 21384 |
\begin{align*}
x^{2}+3 y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.397 |
|
| 21385 |
\begin{align*}
4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.398 |
|
| 21386 |
\begin{align*}
y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.400 |
|
| 21387 |
\begin{align*}
x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.401 |
|
| 21388 |
\begin{align*}
\theta ^{\prime }&=t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.402 |
|
| 21389 |
\begin{align*}
2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.403 |
|
| 21390 |
\begin{align*}
x^{\prime \prime }-x+3 x^{2}&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
4.403 |
|
| 21391 |
\begin{align*}
x^{2} y^{\prime }&=a +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.404 |
|
| 21392 |
\begin{align*}
\left (\left (-y+a \right ) \left (-y+b \right )+\left (-y+a \right ) \left (c -y\right )+\left (-y+b \right ) \left (c -y\right )\right ) {y^{\prime }}^{2}+2 \left (-y+a \right ) \left (-y+b \right ) \left (c -y\right ) y^{\prime \prime }&=\operatorname {a3} \left (-y+a \right )^{2} \left (-y+b \right )^{2}+2 \operatorname {a2} \left (-y+a \right )^{2} \left (c -y\right )^{2}+\operatorname {a1} \left (-y+b \right )^{2} \left (c -y\right )^{2}+\operatorname {a0} \left (-y+a \right )^{2} \left (-y+b \right )^{2} \left (c -y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.405 |
|
| 21393 |
\begin{align*}
{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.405 |
|
| 21394 |
\begin{align*}
x^{\prime }&=\sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.405 |
|
| 21395 | \begin{align*}
v^{\prime }+\frac {2 v}{u}&=3 v \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.406 |
|
| 21396 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.406 |
|
| 21397 |
\begin{align*}
y^{\prime }&=-\frac {i \left (i x +1+x^{4}+2 y^{2} x^{2}+y^{4}+x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}+y^{6}\right )}{y} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.407 |
|
| 21398 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.407 |
|
| 21399 |
\begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (3\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.408 |
|
| 21400 |
\begin{align*}
2 y^{\prime \prime }-3 y^{2}&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
4.409 |
|