2.3.215 Problems 21401 to 21500

Table 2.961: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

21401

2942

\begin{align*} y \left (y-x^{2}\right )+x^{3} y^{\prime }&=0 \\ \end{align*}

4.410

21402

14169

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

4.410

21403

3014

\begin{align*} y-y^{\prime } x&=2 y^{\prime }+2 y^{2} \\ \end{align*}

4.411

21404

3039

\begin{align*} x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

4.411

21405

5039

\begin{align*} y^{\prime } y+x \,{\mathrm e}^{-x} \left (1+y\right )&=0 \\ \end{align*}

4.411

21406

9164

\begin{align*} y^{\prime }&=\sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \\ \end{align*}

4.412

21407

14179

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

4.412

21408

12282

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

4.415

21409

11493

\begin{align*} x \ln \left (x \right ) y^{\prime }-y^{2} \ln \left (x \right )-\left (2 \ln \left (x \right )^{2}+1\right ) y-\ln \left (x \right )^{3}&=0 \\ \end{align*}

4.417

21410

4848

\begin{align*} \left (x +a \right ) y^{\prime }&=y \left (1-a y\right ) \\ \end{align*}

4.418

21411

4946

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }&=\left (x -a \right ) \left (-b +x \right )+\left (2 x -a -b \right ) y \\ \end{align*}

4.420

21412

2517

\begin{align*} 3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

4.421

21413

7491

\begin{align*} y^{\prime }+\frac {y}{x}&=x^{3} y^{2} \\ \end{align*}

4.421

21414

4097

\begin{align*} x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\ \end{align*}

4.422

21415

5295

\begin{align*} \left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right )&=0 \\ \end{align*}

4.422

21416

2971

\begin{align*} 2 y&=\left (y^{4}+x \right ) y^{\prime } \\ \end{align*}

4.423

21417

13965

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \\ \end{align*}

4.426

21418

8707

\begin{align*} x^{2}+y x +y^{2}&=x^{2} y^{\prime } \\ \end{align*}

4.427

21419

21313

\begin{align*} x^{\prime }&=\lambda x-x^{5} \\ \end{align*}

4.428

21420

15594

\begin{align*} y^{\prime }&=\frac {y^{2}}{-y x +1} \\ \end{align*}

4.429

21421

14118

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

4.430

21422

25745

\begin{align*} y^{\prime } x +y&=2 x \\ y \left (x_{0} \right ) &= 1 \\ \end{align*}

4.430

21423

1589

\begin{align*} \left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right )&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

4.431

21424

13282

\begin{align*} y^{\prime }&=y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \\ \end{align*}

4.431

21425

729

\begin{align*} \left (x +y\right ) y^{\prime }&=x -y \\ \end{align*}

4.433

21426

4314

\begin{align*} -y+y^{\prime } x&=x \cot \left (\frac {y}{x}\right ) \\ \end{align*}

4.433

21427

6908

\begin{align*} y x -y^{2}-x^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

4.433

21428

13739

\begin{align*} y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y&=0 \\ \end{align*}

4.433

21429

7748

\begin{align*} y^{\prime }+x +x y^{2}&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

4.434

21430

20253

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime }&=y x \\ \end{align*}

4.436

21431

1706

\begin{align*} x^{2}+y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

4.438

21432

21480

\begin{align*} x^{\prime \prime }-4 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 3 \\ \end{align*}

4.438

21433

2941

\begin{align*} \left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4}&=0 \\ \end{align*}

4.441

21434

4249

\begin{align*} \left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \\ \end{align*}

4.442

21435

11446

\begin{align*} x^{2} y^{\prime }+y^{3} a \,x^{2}+b y^{2}&=0 \\ \end{align*}

4.443

21436

18059

\begin{align*} x -y+2+\left (x -y+3\right ) y^{\prime }&=0 \\ \end{align*}

4.444

21437

8368

\begin{align*} y^{\prime }&=y \,{\mathrm e}^{-x^{2}} \\ y \left (4\right ) &= 1 \\ \end{align*}

4.447

21438

15941

\begin{align*} y^{\prime }&=\frac {\left (t^{2}-4\right ) \left (1+y\right ) {\mathrm e}^{y}}{\left (-1+t \right ) \left (3-y\right )} \\ \end{align*}

4.450

21439

14534

\begin{align*} y^{2} {\mathrm e}^{2 x}-2 x +y \,{\mathrm e}^{2 x} y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}

4.454

21440

21843

\begin{align*} y^{\prime }+3 x^{2} y&=3 x^{2} \\ \end{align*}

4.454

21441

12389

\begin{align*} y^{\prime \prime } x -\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y&=0 \\ \end{align*}

4.455

21442

7224

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

4.457

21443

17263

\begin{align*} 2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

4.459

21444

1685

\begin{align*} 4 x +7 y+\left (3 x +4 y\right ) y^{\prime }&=0 \\ \end{align*}

4.460

21445

23223

\begin{align*} x^{2}+y^{2}-2 x y^{\prime } y&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

4.462

21446

11501

\begin{align*} y^{\prime } y+x^{3}+y&=0 \\ \end{align*}

4.463

21447

19251

\begin{align*} y^{\prime } x&=\left (-2 x^{2}+1\right ) \tan \left (y\right ) \\ \end{align*}

4.463

21448

1159

\begin{align*} y^{\prime }&=\frac {x^{2}+3 y^{2}}{2 y x} \\ \end{align*}

4.464

21449

7012

\begin{align*} y^{\prime } x&=x +y+{\mathrm e}^{\frac {y}{x}} x \\ \end{align*}

4.464

21450

15351

\begin{align*} -y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

4.464

21451

17905

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2}&=0 \\ y \left (-\infty \right ) &= \frac {7 \pi }{2} \\ \end{align*}

4.464

21452

6989

\begin{align*} y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\ \end{align*}

4.465

21453

7254

\begin{align*} y^{\prime }&=\frac {y}{x}-\tan \left (\frac {y}{x}\right ) \\ \end{align*}

4.467

21454

12373

\begin{align*} y^{\prime \prime } x +\left (x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

4.467

21455

4701

\begin{align*} y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right )&=0 \\ \end{align*}

4.470

21456

8886

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

4.471

21457

4421

\begin{align*} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

4.473

21458

20121

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }&=x y^{2} \\ \end{align*}

4.474

21459

18572

\begin{align*} y^{\prime }&=-\frac {4 x +2 y}{2 x +3 y} \\ \end{align*}

4.475

21460

15533

\begin{align*} y^{\prime }&=y^{2}-x^{2} \\ \end{align*}

4.477

21461

61

\begin{align*} 2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-16}} \\ y \left (5\right ) &= 2 \\ \end{align*}

4.478

21462

3652

\begin{align*} y^{\prime }&=\frac {y-\sqrt {y^{2}+x^{2}}}{x} \\ y \left (3\right ) &= 4 \\ \end{align*}

4.479

21463

12452

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-x^{3} \sin \left (x \right )&=0 \\ \end{align*}

4.480

21464

15345

\begin{align*} y^{\prime } \sqrt {-x^{2}+1}-\sqrt {1-y^{2}}&=0 \\ \end{align*}

4.480

21465

2875

\begin{align*} y^{\prime } y+x&=2 y \\ \end{align*}

4.482

21466

4805

\begin{align*} y^{\prime } x +2 y&=-\sqrt {1+y^{2}} \\ \end{align*}

4.484

21467

23192

\begin{align*} x^{2}+y^{2}+2 x y^{\prime } y&=0 \\ y \left (1\right ) &= -1 \\ \end{align*}

4.485

21468

23187

\begin{align*} 3 x^{2} y+y^{2}-\left (-x^{3}-2 y x \right ) y^{\prime }&=0 \\ \end{align*}

4.488

21469

20819

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

4.489

21470

19792

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+x^{2} y&=x^{3}-x^{2} \arctan \left (x \right ) \\ \end{align*}

4.490

21471

8839

\begin{align*} x +y^{\prime } y+y-y^{\prime } x&=0 \\ \end{align*}

4.492

21472

18580

\begin{align*} 2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

4.493

21473

4804

\begin{align*} y^{\prime } x +2 y&=\sqrt {1+y^{2}} \\ \end{align*}

4.494

21474

25779

\begin{align*} y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

4.494

21475

19376

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } y&=0 \\ \end{align*}

4.496

21476

1801

\begin{align*} \left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8&=0 \\ \end{align*}

4.498

21477

17220

\begin{align*} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime }&=0 \\ \end{align*}

4.499

21478

17948

\begin{align*} 2 y^{\prime } x -y&=1-\frac {2}{\sqrt {x}} \\ y \left (\infty \right ) &= -1 \\ \end{align*}

4.500

21479

12334

\begin{align*} -x^{3} y+x^{4} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

4.501

21480

24129

\begin{align*} y x -\left (2+x \right ) y^{\prime }&=0 \\ \end{align*}

4.502

21481

4407

\begin{align*} 2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime }&=0 \\ \end{align*}

4.503

21482

3469

\begin{align*} y^{\prime }&=\tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \\ \end{align*}

4.504

21483

4954

\begin{align*} 2 \left (-x^{2}+1\right ) y^{\prime }&=\sqrt {-x^{2}+1}+\left (x +1\right ) y \\ \end{align*}

4.505

21484

1201

\begin{align*} 2 x -2 \,{\mathrm e}^{y x} \sin \left (2 x \right )+{\mathrm e}^{y x} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{y x} x \cos \left (2 x \right )\right ) y^{\prime }&=0 \\ \end{align*}

4.510

21485

25051

\begin{align*} y^{\prime }&=\frac {t -y}{t +y} \\ y \left (1\right ) &= -1 \\ \end{align*}

4.513

21486

21357

\begin{align*} {\mathrm e}^{x}-y^{\prime } y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

4.518

21487

20324

\begin{align*} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\ \end{align*}

4.519

21488

5191

\begin{align*} x \left (1-2 y x \right ) y^{\prime }+y \left (2 y x +1\right )&=0 \\ \end{align*}

4.520

21489

14056

\begin{align*} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right )&=0 \\ \end{align*}

4.520

21490

12495

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+\left (a -2\right ) y&=0 \\ \end{align*}

4.522

21491

22382

\begin{align*} x^{2}-y^{2}-2 x y^{\prime } y&=0 \\ \end{align*}

4.524

21492

11353

\begin{align*} y^{\prime }-a y^{n}-b \,x^{\frac {n}{1-n}}&=0 \\ \end{align*}

4.525

21493

119

\begin{align*} x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right )&=0 \\ \end{align*}

4.526

21494

5344

\begin{align*} \left (x \sqrt {1+x^{2}+y^{2}}-y \left (y^{2}+x^{2}\right )\right ) y^{\prime }&=\left (y^{2}+x^{2}\right ) x +y \sqrt {1+x^{2}+y^{2}} \\ \end{align*}

4.527

21495

4895

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=5-y x \\ \end{align*}

4.532

21496

13286

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \\ \end{align*}

4.533

21497

4806

\begin{align*} y^{\prime } x&=y+\sqrt {y^{2}+x^{2}} \\ \end{align*}

4.534

21498

8874

\begin{align*} L y^{\prime }+R y&=E \,{\mathrm e}^{i \omega x} \\ y \left (0\right ) &= 0 \\ \end{align*}

4.535

21499

24126

\begin{align*} v^{\prime }&=-\frac {v}{p} \\ \end{align*}

4.536

21500

21035

\begin{align*} x^{\prime }&=x^{p} \\ \end{align*}

4.538