| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 21401 |
\begin{align*}
y \left (y-x^{2}\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.410 |
|
| 21402 |
\begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.410 |
|
| 21403 |
\begin{align*}
y-y^{\prime } x&=2 y^{\prime }+2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.411 |
|
| 21404 |
\begin{align*}
x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.411 |
|
| 21405 |
\begin{align*}
y^{\prime } y+x \,{\mathrm e}^{-x} \left (1+y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.411 |
|
| 21406 |
\begin{align*}
y^{\prime }&=\sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.412 |
|
| 21407 |
\begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.412 |
|
| 21408 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.415 |
|
| 21409 |
\begin{align*}
x \ln \left (x \right ) y^{\prime }-y^{2} \ln \left (x \right )-\left (2 \ln \left (x \right )^{2}+1\right ) y-\ln \left (x \right )^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.417 |
|
| 21410 |
\begin{align*}
\left (x +a \right ) y^{\prime }&=y \left (1-a y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.418 |
|
| 21411 |
\begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime }&=\left (x -a \right ) \left (-b +x \right )+\left (2 x -a -b \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.420 |
|
| 21412 |
\begin{align*}
3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.421 |
|
| 21413 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=x^{3} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.421 |
|
| 21414 |
\begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.422 |
|
| 21415 |
\begin{align*}
\left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.422 |
|
| 21416 |
\begin{align*}
2 y&=\left (y^{4}+x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.423 |
|
| 21417 |
\begin{align*}
\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.426 |
|
| 21418 | \begin{align*}
x^{2}+y x +y^{2}&=x^{2} y^{\prime } \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.427 |
|
| 21419 |
\begin{align*}
x^{\prime }&=\lambda x-x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.428 |
|
| 21420 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{-y x +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.429 |
|
| 21421 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.430 |
|
| 21422 |
\begin{align*}
y^{\prime } x +y&=2 x \\
y \left (x_{0} \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.430 |
|
| 21423 |
\begin{align*}
\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right )&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.431 |
|
| 21424 |
\begin{align*}
y^{\prime }&=y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.431 |
|
| 21425 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.433 |
|
| 21426 |
\begin{align*}
-y+y^{\prime } x&=x \cot \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.433 |
|
| 21427 |
\begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.433 |
|
| 21428 |
\begin{align*}
y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
4.433 |
|
| 21429 |
\begin{align*}
y^{\prime }+x +x y^{2}&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
4.434 |
|
| 21430 |
\begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.436 |
|
| 21431 |
\begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.438 |
|
| 21432 |
\begin{align*}
x^{\prime \prime }-4 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.438 |
|
| 21433 |
\begin{align*}
\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.441 |
|
| 21434 |
\begin{align*}
\left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.442 |
|
| 21435 |
\begin{align*}
x^{2} y^{\prime }+y^{3} a \,x^{2}+b y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.443 |
|
| 21436 |
\begin{align*}
x -y+2+\left (x -y+3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.444 |
|
| 21437 | \begin{align*}
y^{\prime }&=y \,{\mathrm e}^{-x^{2}} \\
y \left (4\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.447 |
|
| 21438 |
\begin{align*}
y^{\prime }&=\frac {\left (t^{2}-4\right ) \left (1+y\right ) {\mathrm e}^{y}}{\left (-1+t \right ) \left (3-y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.450 |
|
| 21439 |
\begin{align*}
y^{2} {\mathrm e}^{2 x}-2 x +y \,{\mathrm e}^{2 x} y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.454 |
|
| 21440 |
\begin{align*}
y^{\prime }+3 x^{2} y&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.454 |
|
| 21441 |
\begin{align*}
y^{\prime \prime } x -\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.455 |
|
| 21442 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.457 |
|
| 21443 |
\begin{align*}
2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.459 |
|
| 21444 |
\begin{align*}
4 x +7 y+\left (3 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.460 |
|
| 21445 |
\begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.462 |
|
| 21446 |
\begin{align*}
y^{\prime } y+x^{3}+y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.463 |
|
| 21447 |
\begin{align*}
y^{\prime } x&=\left (-2 x^{2}+1\right ) \tan \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.463 |
|
| 21448 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+3 y^{2}}{2 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.464 |
|
| 21449 |
\begin{align*}
y^{\prime } x&=x +y+{\mathrm e}^{\frac {y}{x}} x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.464 |
|
| 21450 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.464 |
|
| 21451 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2}&=0 \\
y \left (-\infty \right ) &= \frac {7 \pi }{2} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
4.464 |
|
| 21452 |
\begin{align*}
y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.465 |
|
| 21453 |
\begin{align*}
y^{\prime }&=\frac {y}{x}-\tan \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.467 |
|
| 21454 |
\begin{align*}
y^{\prime \prime } x +\left (x +b \right ) y^{\prime }+a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.467 |
|
| 21455 |
\begin{align*}
y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.470 |
|
| 21456 |
\begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
4.471 |
|
| 21457 | \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.473 |
|
| 21458 |
\begin{align*}
y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }&=x y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.474 |
|
| 21459 |
\begin{align*}
y^{\prime }&=-\frac {4 x +2 y}{2 x +3 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.475 |
|
| 21460 |
\begin{align*}
y^{\prime }&=y^{2}-x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.477 |
|
| 21461 |
\begin{align*}
2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-16}} \\
y \left (5\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.478 |
|
| 21462 |
\begin{align*}
y^{\prime }&=\frac {y-\sqrt {y^{2}+x^{2}}}{x} \\
y \left (3\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.479 |
|
| 21463 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-x^{3} \sin \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.480 |
|
| 21464 |
\begin{align*}
y^{\prime } \sqrt {-x^{2}+1}-\sqrt {1-y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.480 |
|
| 21465 |
\begin{align*}
y^{\prime } y+x&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.482 |
|
| 21466 |
\begin{align*}
y^{\prime } x +2 y&=-\sqrt {1+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.484 |
|
| 21467 |
\begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.485 |
|
| 21468 |
\begin{align*}
3 x^{2} y+y^{2}-\left (-x^{3}-2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.488 |
|
| 21469 |
\begin{align*}
y^{\prime }+y&=\sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.489 |
|
| 21470 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+x^{2} y&=x^{3}-x^{2} \arctan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.490 |
|
| 21471 |
\begin{align*}
x +y^{\prime } y+y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.492 |
|
| 21472 |
\begin{align*}
2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.493 |
|
| 21473 |
\begin{align*}
y^{\prime } x +2 y&=\sqrt {1+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.494 |
|
| 21474 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.494 |
|
| 21475 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.496 |
|
| 21476 |
\begin{align*}
\left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.498 |
|
| 21477 | \begin{align*}
1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime }&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 4.499 |
|
| 21478 |
\begin{align*}
2 y^{\prime } x -y&=1-\frac {2}{\sqrt {x}} \\
y \left (\infty \right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.500 |
|
| 21479 |
\begin{align*}
-x^{3} y+x^{4} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.501 |
|
| 21480 |
\begin{align*}
y x -\left (2+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.502 |
|
| 21481 |
\begin{align*}
2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.503 |
|
| 21482 |
\begin{align*}
y^{\prime }&=\tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.504 |
|
| 21483 |
\begin{align*}
2 \left (-x^{2}+1\right ) y^{\prime }&=\sqrt {-x^{2}+1}+\left (x +1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.505 |
|
| 21484 |
\begin{align*}
2 x -2 \,{\mathrm e}^{y x} \sin \left (2 x \right )+{\mathrm e}^{y x} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{y x} x \cos \left (2 x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.510 |
|
| 21485 |
\begin{align*}
y^{\prime }&=\frac {t -y}{t +y} \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.513 |
|
| 21486 |
\begin{align*}
{\mathrm e}^{x}-y^{\prime } y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.518 |
|
| 21487 |
\begin{align*}
y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.519 |
|
| 21488 |
\begin{align*}
x \left (1-2 y x \right ) y^{\prime }+y \left (2 y x +1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.520 |
|
| 21489 |
\begin{align*}
x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right )&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
4.520 |
|
| 21490 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+\left (a -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.522 |
|
| 21491 |
\begin{align*}
x^{2}-y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.524 |
|
| 21492 |
\begin{align*}
y^{\prime }-a y^{n}-b \,x^{\frac {n}{1-n}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.525 |
|
| 21493 |
\begin{align*}
x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.526 |
|
| 21494 |
\begin{align*}
\left (x \sqrt {1+x^{2}+y^{2}}-y \left (y^{2}+x^{2}\right )\right ) y^{\prime }&=\left (y^{2}+x^{2}\right ) x +y \sqrt {1+x^{2}+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.527 |
|
| 21495 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=5-y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.532 |
|
| 21496 |
\begin{align*}
y^{\prime }&=y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.533 |
|
| 21497 | \begin{align*}
y^{\prime } x&=y+\sqrt {y^{2}+x^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.534 |
|
| 21498 |
\begin{align*}
L y^{\prime }+R y&=E \,{\mathrm e}^{i \omega x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.535 |
|
| 21499 |
\begin{align*}
v^{\prime }&=-\frac {v}{p} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.536 |
|
| 21500 |
\begin{align*}
x^{\prime }&=x^{p} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.538 |
|