| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 20901 |
\begin{align*}
y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.882 |
|
| 20902 |
\begin{align*}
\left (x -2\right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y&=\left (x -2\right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.883 |
|
| 20903 |
\begin{align*}
y^{2}&=\left (x^{3}-y x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.885 |
|
| 20904 |
\begin{align*}
\left (x -2 y\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.885 |
|
| 20905 |
\begin{align*}
y^{\prime } x +y&=x^{2} \left ({\mathrm e}^{x}+1\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.885 |
|
| 20906 |
\begin{align*}
y-t +\left (t +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.887 |
|
| 20907 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.889 |
|
| 20908 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.890 |
|
| 20909 |
\begin{align*}
x \left (c \,x^{2}+b x +a \right ) y^{\prime }+x^{2}-\left (c \,x^{2}+b x +a \right ) y&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.891 |
|
| 20910 |
\begin{align*}
\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.891 |
|
| 20911 |
\begin{align*}
y^{\prime } x&=y+\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.892 |
|
| 20912 |
\begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.892 |
|
| 20913 |
\begin{align*}
y^{\prime }-\frac {3 y}{x}&=\frac {y^{2}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.894 |
|
| 20914 |
\begin{align*}
y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}}&=t \\
y \left (3\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| 20915 |
\begin{align*}
y^{\prime \prime } x +\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.898 |
|
| 20916 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=y-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.899 |
|
| 20917 |
\begin{align*}
4 x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.900 |
|
| 20918 | \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +y&=\frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.900 |
|
| 20919 |
\begin{align*}
x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.901 |
|
| 20920 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.901 |
|
| 20921 |
\begin{align*}
2 x^{2} y^{\prime }+1+2 y x -y^{2} x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.902 |
|
| 20922 |
\begin{align*}
x^{2} y^{\prime }&=\left (b x +a \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.904 |
|
| 20923 |
\begin{align*}
\left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.904 |
|
| 20924 |
\begin{align*}
y^{\prime } x&=a y^{2}+b y+c \,x^{2 b} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.905 |
|
| 20925 |
\begin{align*}
y^{3} y^{\prime }&=\left (1+y^{4}\right ) \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.907 |
|
| 20926 |
\begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.907 |
|
| 20927 |
\begin{align*}
y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.908 |
|
| 20928 |
\begin{align*}
y^{\prime }&=2 \csc \left (2 x \right ) \sec \left (x \right )^{2}-2 y \cot \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.909 |
|
| 20929 |
\begin{align*}
y^{\prime } x -a y+y^{2}&=x^{-\frac {2 a}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.910 |
|
| 20930 |
\begin{align*}
y^{\prime }-y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.910 |
|
| 20931 |
\begin{align*}
7 t^{2} x^{\prime }&=3 x-2 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.911 |
|
| 20932 |
\begin{align*}
y^{\prime }&=\left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.914 |
|
| 20933 |
\begin{align*}
y y^{\prime \prime }&=\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.914 |
|
| 20934 |
\begin{align*}
1+y^{2}&=\left (x^{2}+x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.914 |
|
| 20935 |
\begin{align*}
\left (-y x +1\right ) y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.915 |
|
| 20936 |
\begin{align*}
2 y^{\prime \prime }&={\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.915 |
|
| 20937 | \begin{align*}
x^{\prime }-2 x \cos \left (t \right )&=\cos \left (t \right ) \\
x \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.915 |
|
| 20938 |
\begin{align*}
\left (x +2 y^{3}\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.916 |
|
| 20939 |
\begin{align*}
\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right )&=x \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.918 |
|
| 20940 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.918 |
|
| 20941 |
\begin{align*}
\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.919 |
|
| 20942 |
\begin{align*}
y^{\prime }-\frac {3 y}{t}&=2 t^{3} {\mathrm e}^{2 t} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 20943 |
\begin{align*}
1+y^{2}&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 20944 |
\begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 20945 |
\begin{align*}
\left (1-x \right ) y^{\prime }+y x&=x \left (x -1\right )^{2} \\
y \left (5\right ) &= 24 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 20946 |
\begin{align*}
\sin \left (y\right ) y+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.925 |
|
| 20947 |
\begin{align*}
x^{\prime }&=2 t^{3} x-6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.925 |
|
| 20948 |
\begin{align*}
x \left (-y x +1\right ) y^{\prime }+\left (y x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.927 |
|
| 20949 |
\begin{align*}
y^{\prime } x&=\left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.928 |
|
| 20950 |
\begin{align*}
y^{\prime }&=\frac {\left (3+2 y\right )^{2}}{\left (5+4 x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.928 |
|
| 20951 |
\begin{align*}
5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.928 |
|
| 20952 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&=\frac {\sin \left (2 x \right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.928 |
|
| 20953 |
\begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-y \sin \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.929 |
|
| 20954 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.931 |
|
| 20955 |
\begin{align*}
y^{\prime } x +y&=a \left (-x^{2}+1\right ) y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.933 |
|
| 20956 | \begin{align*}
y^{\prime } \sqrt {-x^{2}+1}&=1+y^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.935 |
|
| 20957 |
\begin{align*}
\left (\ln \left (y\right )+2 x -1\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.937 |
|
| 20958 |
\begin{align*}
x^{\prime }&=\frac {x}{t}+\frac {x^{2}}{t^{3}} \\
x \left (2\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.937 |
|
| 20959 |
\begin{align*}
y^{\prime }-2 y x&=2 x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.937 |
|
| 20960 |
\begin{align*}
\frac {\cos \left (y\right )^{2} y^{\prime }}{x}+\frac {\cos \left (x \right )^{2}}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.937 |
|
| 20961 |
\begin{align*}
2 \cos \left (2 x +y\right )-x^{2}+\left (\cos \left (2 x +y\right )+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.938 |
|
| 20962 |
\begin{align*}
y {y^{\prime }}^{2}+a x y^{\prime }+b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.939 |
|
| 20963 |
\begin{align*}
y^{\prime }&=\left (x -y+5\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.945 |
|
| 20964 |
\begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.945 |
|
| 20965 |
\begin{align*}
y^{\prime }&=\frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.946 |
|
| 20966 |
\begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.946 |
|
| 20967 |
\begin{align*}
y^{\prime }&=\sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.947 |
|
| 20968 |
\begin{align*}
-x^{\prime \prime }+x&={\mathrm e}^{-x} \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.947 |
|
| 20969 |
\begin{align*}
\sqrt {x}\, y^{\prime }&=\sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.949 |
|
| 20970 |
\begin{align*}
y^{\prime }&=\frac {2 x y^{2}}{1-x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.951 |
|
| 20971 |
\begin{align*}
\left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.953 |
|
| 20972 |
\begin{align*}
-y+y^{\prime }&=t y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.954 |
|
| 20973 |
\begin{align*}
y^{\prime }&=f \left (x \right )+a y+b z \\
z^{\prime }&=g \left (x \right )+c y+d z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.954 |
|
| 20974 |
\begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.956 |
|
| 20975 |
\begin{align*}
\frac {y}{t}+y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.956 |
|
| 20976 | \begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\
y \left (1\right ) &= -3 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.957 |
|
| 20977 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-y-x^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.960 |
|
| 20978 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime } x +x^{2} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.961 |
|
| 20979 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
3.962 |
|
| 20980 |
\begin{align*}
y x -\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.964 |
|
| 20981 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.965 |
|
| 20982 |
\begin{align*}
\left (x +2 y\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.967 |
|
| 20983 |
\begin{align*}
y^{\prime } x +2 y&=6 \sqrt {y}\, x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.967 |
|
| 20984 |
\begin{align*}
y^{\prime } \sqrt {b^{2}-y^{2}}&=\sqrt {a^{2}-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.967 |
|
| 20985 |
\begin{align*}
\frac {y^{\prime }}{\theta }&=\frac {y \sin \left (\theta \right )}{y^{2}+1} \\
y \left (\pi \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.968 |
|
| 20986 |
\begin{align*}
\left (a y^{3} x +c \right ) x y^{\prime }+\left (b \,x^{3} y+c \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.968 |
|
| 20987 |
\begin{align*}
\theta ^{\prime }&=z \left (-z^{2}+1\right ) \sec \left (\theta \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.969 |
|
| 20988 |
\begin{align*}
x^{2} y^{\prime }&=a +b x y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.970 |
|
| 20989 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (3\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.970 |
|
| 20990 |
\begin{align*}
g \left (x \right ) y^{\prime }&=f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.970 |
|
| 20991 |
\begin{align*}
y^{\prime }&=\left (x -1\right ) \left (y-1\right ) \left (y-2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.971 |
|
| 20992 |
\begin{align*}
\left (y-x \right ) y^{\prime }&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.971 |
|
| 20993 |
\begin{align*}
y \left (y^{2} x^{2}+x^{2}+y^{2}\right )+x \left (x^{2}+y^{2}-y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.971 |
|
| 20994 |
\begin{align*}
\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.972 |
|
| 20995 | \begin{align*}
y^{\prime }&=-\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.972 |
|
| 20996 |
\begin{align*}
x^{3} y^{\prime }&=b \,x^{2} y+a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.973 |
|
| 20997 |
\begin{align*}
y^{\prime }+x \left (y^{2}+y\right )&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.974 |
|
| 20998 |
\begin{align*}
y^{\prime }&=\frac {y}{x}+\sec \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.974 |
|
| 20999 |
\begin{align*}
y^{\prime } \cos \left (y\right )+\sin \left (y\right )&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.975 |
|
| 21000 |
\begin{align*}
y^{\prime } x&=4 y-4 \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.976 |
|