| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 20801 |
\begin{align*}
x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.766 |
|
| 20802 |
\begin{align*}
y^{\prime }-y^{2}-y x -x +1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.767 |
|
| 20803 |
\begin{align*}
\left (-x^{2}+1\right ) z^{\prime }-x z&=a x z^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.769 |
|
| 20804 |
\begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.770 |
|
| 20805 |
\begin{align*}
x \cos \left (y\right ) y^{\prime }+\sin \left (y\right )&=5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.770 |
|
| 20806 |
\begin{align*}
x^{\prime \prime }&=x^{3}-x \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
3.771 |
|
| 20807 |
\begin{align*}
y^{\prime }&=2 y x -x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.771 |
|
| 20808 |
\begin{align*}
x +y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.772 |
|
| 20809 |
\begin{align*}
\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.773 |
|
| 20810 |
\begin{align*}
1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.776 |
|
| 20811 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.777 |
|
| 20812 |
\begin{align*}
\left (y-2\right ) y^{\prime }&=x -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.777 |
|
| 20813 |
\begin{align*}
x^{2} y+y^{2}+x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.779 |
|
| 20814 |
\begin{align*}
y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.780 |
|
| 20815 |
\begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.780 |
|
| 20816 |
\begin{align*}
y^{\prime }&=3+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.781 |
|
| 20817 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }+a \left (y^{2}-2 y x +1\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.782 |
|
| 20818 | \begin{align*}
z^{\prime \prime }+z^{3}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.783 |
|
| 20819 |
\begin{align*}
{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| 20820 |
\begin{align*}
x^{2}+y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| 20821 |
\begin{align*}
y^{\prime }&=1-y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.784 |
|
| 20822 |
\begin{align*}
\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.785 |
|
| 20823 |
\begin{align*}
3 y^{2}+4 y x +\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.785 |
|
| 20824 |
\begin{align*}
\cos \left (x \right )^{2} y^{\prime }+y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.786 |
|
| 20825 |
\begin{align*}
y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.789 |
|
| 20826 |
\begin{align*}
2 t +3 x+\left (3 t -x\right ) x^{\prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.789 |
|
| 20827 |
\begin{align*}
y^{\prime }&=3 x^{2} \left (1+y^{2}\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.790 |
|
| 20828 |
\begin{align*}
y_{1}^{\prime }&=y_{2}-2 y_{1}+\sin \left (2 x \right ) \\
y_{2}^{\prime }&=-3 y_{1}+y_{2}-2 \cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.790 |
|
| 20829 |
\begin{align*}
\left (x +y-1\right ) y^{\prime }&=x +y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.792 |
|
| 20830 |
\begin{align*}
x^{\prime }+t x^{3}+\frac {x}{t}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.793 |
|
| 20831 |
\begin{align*}
\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.794 |
|
| 20832 |
\begin{align*}
y^{5} x^{2}+{\mathrm e}^{x^{3}} y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.794 |
|
| 20833 |
\begin{align*}
y^{\prime }&=\frac {x +3 y}{-3 x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.795 |
|
| 20834 |
\begin{align*}
y^{\prime }&=\frac {y}{y^{3}-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.795 |
|
| 20835 |
\begin{align*}
y^{\prime }-\tan \left (x \right ) y&=\cos \left (x \right )-2 x \sin \left (x \right ) \\
y \left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.796 |
|
| 20836 |
\begin{align*}
2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.796 |
|
| 20837 | \begin{align*}
y^{\prime }+\frac {x +2 y}{x}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.796 |
|
| 20838 |
\begin{align*}
y^{\prime }&=2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.796 |
|
| 20839 |
\begin{align*}
y^{\prime }&=a y-b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.797 |
|
| 20840 |
\begin{align*}
y^{\prime }+\frac {x}{y}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.799 |
|
| 20841 |
\begin{align*}
\left (1-2 x \right ) y^{\prime }&=16+32 x -6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.803 |
|
| 20842 |
\begin{align*}
y^{\prime } x +y \ln \left (x \right )&=y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.805 |
|
| 20843 |
\begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.805 |
|
| 20844 |
\begin{align*}
2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.806 |
|
| 20845 |
\begin{align*}
y^{\prime }&=\frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.806 |
|
| 20846 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-1} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.807 |
|
| 20847 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.808 |
|
| 20848 |
\begin{align*}
y^{\prime }&=\frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.808 |
|
| 20849 |
\begin{align*}
{y^{\prime }}^{3}&=a \,x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.810 |
|
| 20850 |
\begin{align*}
x^{\prime }+x&=4 t \\
x \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.810 |
|
| 20851 |
\begin{align*}
\left (y-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.814 |
|
| 20852 |
\begin{align*}
2 x^{2} y y^{\prime }+y^{2}&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.814 |
|
| 20853 |
\begin{align*}
{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.815 |
|
| 20854 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.816 |
|
| 20855 |
\begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.816 |
|
| 20856 | \begin{align*}
y^{\prime } x&=y+\sqrt {y^{2}+x^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.818 |
|
| 20857 |
\begin{align*}
y^{\prime }&=f \left (x \right )+g \left (x \right ) y+a y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.822 |
|
| 20858 |
\begin{align*}
9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y&=\frac {1}{x} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.823 |
|
| 20859 |
\begin{align*}
y^{\prime }+3 y x&=y \,{\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.823 |
|
| 20860 |
\begin{align*}
y^{\prime } \left (x^{2}+y^{2}+3\right )&=2 x \left (2 y-\frac {x^{2}}{y}\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.823 |
|
| 20861 |
\begin{align*}
x^{2} y^{\prime }+2 y x&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.824 |
|
| 20862 |
\begin{align*}
\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.828 |
|
| 20863 |
\begin{align*}
2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.832 |
|
| 20864 |
\begin{align*}
y-x^{3}+\left (y^{3}+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.832 |
|
| 20865 |
\begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.833 |
|
| 20866 |
\begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (\frac {3}{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.836 |
|
| 20867 |
\begin{align*}
y^{\prime \prime }-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y \,{\mathrm e}^{2 x}-{\mathrm e}^{3 x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.836 |
|
| 20868 |
\begin{align*}
y^{\prime }&=\frac {t^{2}+y^{2}}{t y} \\
y \left ({\mathrm e}\right ) &= 2 \,{\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.836 |
|
| 20869 |
\begin{align*}
3 y^{2}+y \sin \left (2 y x \right )+\left (6 y x +x \sin \left (2 y x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.837 |
|
| 20870 |
\begin{align*}
2 x \left (2 x +y\right ) y^{\prime }&=y \left (4 x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.840 |
|
| 20871 |
\begin{align*}
t x^{\prime }+x g \left (t \right )&=h \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.840 |
|
| 20872 |
\begin{align*}
2 \sqrt {x}\, y^{\prime }+y&=2 x \,{\mathrm e}^{-\sqrt {x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.843 |
|
| 20873 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }-y \left (y-x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.845 |
|
| 20874 |
\begin{align*}
\left (1+{\mathrm e}^{y}\right )^{2} {\mathrm e}^{-y}+\left ({\mathrm e}^{x}+1\right )^{3} {\mathrm e}^{-x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.845 |
|
| 20875 |
\begin{align*}
\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) \left (c \,x^{2}+d \right ) y^{\prime }+2 \left (-a d +b c \right ) x y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.846 |
|
| 20876 | \begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= 4 \\
\end{align*} | ✓ | ✓ | ✗ | ✗ | 3.846 |
|
| 20877 |
\begin{align*}
x^{2} y^{\prime }+\left (1-2 x \right ) y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.849 |
|
| 20878 |
\begin{align*}
y^{\prime }&=\frac {\cos \left (y\right ) \sec \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.849 |
|
| 20879 |
\begin{align*}
y^{\prime }&=\frac {y}{x}+\sec \left (\frac {y}{x}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.851 |
|
| 20880 |
\begin{align*}
y^{\prime }+y \ln \left (y\right ) \tan \left (x \right )&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.852 |
|
| 20881 |
\begin{align*}
1+y x -\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.852 |
|
| 20882 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime }&=4 x \left (y^{2}+2 y+1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.853 |
|
| 20883 |
\begin{align*}
1+y-t y^{\prime }&=\ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.855 |
|
| 20884 |
\begin{align*}
\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.856 |
|
| 20885 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.857 |
|
| 20886 |
\begin{align*}
-4 x^{3}+6 y \sin \left (6 y x \right )+\left (4 y^{3}+6 x \sin \left (6 y x \right )\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.858 |
|
| 20887 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\frac {y}{x}}+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.858 |
|
| 20888 |
\begin{align*}
x^{\prime }&=9-4 x^{2} \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.859 |
|
| 20889 |
\begin{align*}
2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.859 |
|
| 20890 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.860 |
|
| 20891 |
\begin{align*}
y^{\prime }&=\left (x +y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.864 |
|
| 20892 |
\begin{align*}
2 x +\frac {y^{2}+x^{2}}{x^{2} y}&=\frac {\left (y^{2}+x^{2}\right ) y^{\prime }}{x y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.868 |
|
| 20893 |
\begin{align*}
y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.869 |
|
| 20894 |
\begin{align*}
y^{\prime } y+x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.870 |
|
| 20895 | \begin{align*}
-y+y^{\prime } x&=\sqrt {9 x^{2}+y^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.870 |
|
| 20896 |
\begin{align*}
y^{\prime }&=\frac {y x +3 x -y-3}{y x -2 x +4 y-8} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.873 |
|
| 20897 |
\begin{align*}
x \sin \left (\frac {y}{x}\right ) y^{\prime }&=\sin \left (\frac {y}{x}\right ) y+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.874 |
|
| 20898 |
\begin{align*}
x^{4} \left (y^{\prime }+y^{2}\right )+a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.875 |
|
| 20899 |
\begin{align*}
\left (y^{2} x^{2}+x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.878 |
|
| 20900 |
\begin{align*}
y^{\prime }&=x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.880 |
|