| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 21001 |
\begin{align*}
\ln \left (t y\right )+\frac {t y^{\prime }}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.976 |
|
| 21002 |
\begin{align*}
y^{\prime } x +y \ln \left (x \right )&=y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.977 |
|
| 21003 |
\begin{align*}
y^{\prime } x&=y \\
y \left (2\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.977 |
|
| 21004 |
\begin{align*}
y^{\prime \prime } x +\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.979 |
|
| 21005 |
\begin{align*}
\left (x^{2}+2 y \,{\mathrm e}^{2 x}\right ) y^{\prime }+2 y x +2 y^{2} {\mathrm e}^{2 x}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.979 |
|
| 21006 |
\begin{align*}
y^{\prime }&=a x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.980 |
|
| 21007 |
\begin{align*}
y^{\prime } x +y&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.980 |
|
| 21008 |
\begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.984 |
|
| 21009 |
\begin{align*}
\left (x +2 y\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.987 |
|
| 21010 |
\begin{align*}
\left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.987 |
|
| 21011 |
\begin{align*}
1+y^{2}&=\frac {y^{\prime }}{x^{3} \left (x -1\right )} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.991 |
|
| 21012 |
\begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.991 |
|
| 21013 |
\begin{align*}
1-y^{2}-t y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.992 |
|
| 21014 |
\begin{align*}
y^{\left (8\right )}+8 y^{\left (7\right )}+28 y^{\left (6\right )}+56 y^{\left (5\right )}+70 y^{\prime \prime \prime \prime }+56 y^{\prime \prime \prime }+28 y^{\prime \prime }+8 y^{\prime }&={\mathrm e}^{-x} x^{9} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.993 |
|
| 21015 |
\begin{align*}
y^{4}+y x +\left (x y^{3}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.994 |
|
| 21016 |
\begin{align*}
y^{\prime \prime } x +a y^{\prime }+\left (b x +c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.994 |
|
| 21017 |
\begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.994 |
|
| 21018 | \begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.996 |
|
| 21019 |
\begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.998 |
|
| 21020 |
\begin{align*}
y^{\prime \prime } x +\left (x^{2}-1\right ) y^{\prime }+x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.998 |
|
| 21021 |
\begin{align*}
y^{\prime }&=\frac {t +y}{t -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.000 |
|
| 21022 |
\begin{align*}
y^{\prime }&=-\frac {a x}{2}+F \left (y+\frac {a \,x^{2}}{4}+\frac {b x}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.000 |
|
| 21023 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.002 |
|
| 21024 |
\begin{align*}
y^{\prime }+\left (a x +y\right ) y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.003 |
|
| 21025 |
\begin{align*}
\left (1-x^{3} y\right ) y^{\prime }&=y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.005 |
|
| 21026 |
\begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.006 |
|
| 21027 |
\begin{align*}
x^{4}-3 y+3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.007 |
|
| 21028 |
\begin{align*}
a \,x^{n} f \left (y^{\prime }\right )+y^{\prime } x -y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.008 |
|
| 21029 |
\begin{align*}
\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.009 |
|
| 21030 |
\begin{align*}
y^{\prime }&=\frac {\left (a -x \right ) y}{d \,x^{2}+c x +b} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.010 |
|
| 21031 |
\begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.012 |
|
| 21032 |
\begin{align*}
y_{1}^{\prime }&=y_{2} \\
y_{2}^{\prime }&=-3 y_{1}+2 y_{3} \\
y_{3}^{\prime }&=y_{4} \\
y_{4}^{\prime }&=2 y_{1}-5 y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.013 |
|
| 21033 |
\begin{align*}
b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.017 |
|
| 21034 |
\begin{align*}
y^{\prime }&=\frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.019 |
|
| 21035 |
\begin{align*}
y^{\prime } x +y&=a \left (x^{2}+1\right ) y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.020 |
|
| 21036 |
\begin{align*}
y^{\prime } x -2 y&=-1 \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.023 |
|
| 21037 | \begin{align*}
p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u&=f \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.026 |
|
| 21038 |
\begin{align*}
2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.029 |
|
| 21039 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.029 |
|
| 21040 |
\begin{align*}
2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (\cos \left (y\right ) t^{2}+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.030 |
|
| 21041 |
\begin{align*}
{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.034 |
|
| 21042 |
\begin{align*}
x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.035 |
|
| 21043 |
\begin{align*}
\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.036 |
|
| 21044 |
\begin{align*}
3 x^{2} y^{3}-y^{2}+y+\left (-y x +2 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.039 |
|
| 21045 |
\begin{align*}
y^{\prime } \sqrt {x^{4}+x^{2}+1}&=\sqrt {1+y^{2}+y^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.039 |
|
| 21046 |
\begin{align*}
3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.039 |
|
| 21047 |
\begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.040 |
|
| 21048 |
\begin{align*}
{\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
4.040 |
|
| 21049 |
\begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.041 |
|
| 21050 |
\begin{align*}
y^{\prime }&=a \,x^{n} {\mathrm e}^{2 \lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-\lambda \right ) y+c \,x^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.042 |
|
| 21051 |
\begin{align*}
y^{\prime } y+x +f \left (y^{2}+x^{2}\right ) g \left (x \right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.043 |
|
| 21052 |
\begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.043 |
|
| 21053 |
\begin{align*}
\left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.044 |
|
| 21054 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= {\frac {1}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.046 |
|
| 21055 |
\begin{align*}
y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.047 |
|
| 21056 |
\begin{align*}
y+\frac {x}{y^{\prime }}&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.050 |
|
| 21057 | \begin{align*}
\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right )&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.052 |
|
| 21058 |
\begin{align*}
y^{\prime }-\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}+\frac {g^{\prime }\left (x \right )}{f \left (x \right )}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.053 |
|
| 21059 |
\begin{align*}
y^{\prime }&=t y+t y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.054 |
|
| 21060 |
\begin{align*}
y \left (2 x^{2} y^{3}+3\right )+x \left (x^{2} y^{3}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.055 |
|
| 21061 |
\begin{align*}
y^{\prime }&=\frac {t y \left (4-y\right )}{t +1} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
4.056 |
|
| 21062 |
\begin{align*}
y^{4}-2 y x +3 x^{2} y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.057 |
|
| 21063 |
\begin{align*}
y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.058 |
|
| 21064 |
\begin{align*}
y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
4.058 |
|
| 21065 |
\begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.062 |
|
| 21066 |
\begin{align*}
y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.062 |
|
| 21067 |
\begin{align*}
y^{\prime }&=2 t y+3 t \,{\mathrm e}^{t^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.062 |
|
| 21068 |
\begin{align*}
3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.062 |
|
| 21069 |
\begin{align*}
3 x^{2} y^{\prime }-7 y^{2}-3 y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.063 |
|
| 21070 |
\begin{align*}
y^{\prime }&=\frac {y+\cos \left (\frac {y}{x}\right )^{2}}{x} \\
y \left (1\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.063 |
|
| 21071 |
\begin{align*}
y^{\prime }&=\frac {5 x -y-2}{x +y+4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.063 |
|
| 21072 |
\begin{align*}
\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.066 |
|
| 21073 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \\
y \left (-\infty \right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✗ |
✓ |
4.066 |
|
| 21074 |
\begin{align*}
y^{\prime }&=\frac {x +2 y}{y-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.066 |
|
| 21075 |
\begin{align*}
\left (b \,x^{2}+a \right ) y^{\prime }&=c x y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.068 |
|
| 21076 | \begin{align*}
y^{\prime }&=x^{3} \left (y-x \right )^{2}+\frac {y}{x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.069 |
|
| 21077 |
\begin{align*}
{\mathrm e}^{x}-\left ({\mathrm e}^{x}+1\right ) y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.069 |
|
| 21078 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=0 \\
y \left (3\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.070 |
|
| 21079 |
\begin{align*}
\frac {2 t^{2} y \cos \left (t^{2}\right )-\sin \left (t^{2}\right ) y}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.071 |
|
| 21080 |
\begin{align*}
y^{\prime }&=\frac {x +2 y}{2 x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.072 |
|
| 21081 |
\begin{align*}
x \left (2 x^{2} y \ln \left (y\right )+1\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.072 |
|
| 21082 |
\begin{align*}
x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| 21083 |
\begin{align*}
y^{\prime } x +x y^{2}-\left (2 x^{2}+1\right ) y-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| 21084 |
\begin{align*}
x^{\prime }&=x^{2} \\
x \left (t_{0} \right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| 21085 |
\begin{align*}
a^{2} \left (y^{\prime }-1\right )&=x^{2} y^{\prime }+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| 21086 |
\begin{align*}
x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.074 |
|
| 21087 |
\begin{align*}
y^{\prime }+x y^{2}-x^{3} y-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.074 |
|
| 21088 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.075 |
|
| 21089 |
\begin{align*}
y^{\prime } y&=3 x \\
y \left (-2\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.076 |
|
| 21090 |
\begin{align*}
y^{\prime }&=\left (x +y+2\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.077 |
|
| 21091 |
\begin{align*}
3 x^{2} y \ln \left (y\right )+\left (2 x^{3}+2 y^{3}+3 y^{3} \ln \left (y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.078 |
|
| 21092 |
\begin{align*}
y^{\prime }&=2 y x +3 x^{2} {\mathrm e}^{x^{2}} \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.079 |
|
| 21093 |
\begin{align*}
x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.079 |
|
| 21094 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.079 |
|
| 21095 | \begin{align*}
2 y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 4.080 |
|
| 21096 |
\begin{align*}
6 y x -3 y^{2}+2 y+2 \left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.080 |
|
| 21097 |
\begin{align*}
y^{\prime }&=\frac {3 x^{5}+3 y^{2} x^{2}}{2 x^{3} y-2 y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.083 |
|
| 21098 |
\begin{align*}
x y^{\prime } y&=a \,x^{n}+b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.084 |
|
| 21099 |
\begin{align*}
y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.084 |
|
| 21100 |
\begin{align*}
x_{1}^{\prime }&=139 x_{1}-14 x_{2}-52 x_{3}-14 x_{4}+28 x_{5} \\
x_{2}^{\prime }&=-22 x_{1}+5 x_{2}+7 x_{3}+8 x_{4}-7 x_{5} \\
x_{3}^{\prime }&=370 x_{1}-38 x_{2}-139 x_{3}-38 x_{4}+76 x_{5} \\
x_{4}^{\prime }&=152 x_{1}-16 x_{2}-59 x_{3}-13 x_{4}+35 x_{5} \\
x_{5}^{\prime }&=95 x_{1}-10 x_{2}-38 x_{3}-7 x_{4}+23 x_{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.085 |
|