| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 20301 |
\begin{align*}
x^{2} \left (-y+y^{\prime } x \right )&=y \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.338 |
|
| 20302 |
\begin{align*}
y^{\prime }&=2 x -1+2 y x -y \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.341 |
|
| 20303 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.342 |
|
| 20304 |
\begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.342 |
|
| 20305 |
\begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.343 |
|
| 20306 |
\begin{align*}
\left (3 x -y\right ) y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.344 |
|
| 20307 |
\begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.344 |
|
| 20308 |
\begin{align*}
y^{\prime }&=-x \,{\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.345 |
|
| 20309 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.345 |
|
| 20310 |
\begin{align*}
x^{2} y^{3}+y&=\left (x^{3} y^{2}-x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.347 |
|
| 20311 |
\begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \sin \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.347 |
|
| 20312 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+m y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.352 |
|
| 20313 |
\begin{align*}
\left (y^{3}-x \right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| 20314 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x}+{\mathrm e}^{x} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| 20315 |
\begin{align*}
y^{\prime }&=-x -\sqrt {x^{2}+2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| 20316 |
\begin{align*}
s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
3.354 |
|
| 20317 |
\begin{align*}
y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (y^{2}-a^{2}+x^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.354 |
|
| 20318 | \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=\left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✗ | ✓ | 3.355 |
|
| 20319 |
\begin{align*}
y^{\prime }&=\frac {2 y}{t +1} \\
y \left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.356 |
|
| 20320 |
\begin{align*}
y^{\prime } x +x y^{2}-y-a \,x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.356 |
|
| 20321 |
\begin{align*}
\left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.356 |
|
| 20322 |
\begin{align*}
\left (-x^{2}+1\right ) y^{2}+x \left (y^{2} x^{2}+2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.356 |
|
| 20323 |
\begin{align*}
\left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 t y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.356 |
|
| 20324 |
\begin{align*}
y^{\prime }&=\frac {3 y}{t}+t^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.357 |
|
| 20325 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=\left (x +1\right )^{4}+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| 20326 |
\begin{align*}
y^{\prime }&=t^{2} y^{2}+y^{2}-t^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.358 |
|
| 20327 |
\begin{align*}
y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| 20328 |
\begin{align*}
y y^{\prime }&=t \\
y \left (2\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| 20329 |
\begin{align*}
y^{\prime }-y x&=y^{{3}/{2}} x \\
y \left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.359 |
|
| 20330 |
\begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.360 |
|
| 20331 |
\begin{align*}
y^{\prime } y+x y^{2}-4 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.360 |
|
| 20332 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.360 |
|
| 20333 |
\begin{align*}
x \left (a +b y\right ) y^{\prime }&=c y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.361 |
|
| 20334 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.361 |
|
| 20335 |
\begin{align*}
y^{\prime }&=y+\frac {y}{x \ln \left (x \right )} \\
y \left ({\mathrm e}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.362 |
|
| 20336 |
\begin{align*}
y^{\prime }-x^{2} y&=x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.362 |
|
| 20337 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.363 |
|
| 20338 | \begin{align*}
\left (x -2 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.364 |
|
| 20339 |
\begin{align*}
y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.365 |
|
| 20340 |
\begin{align*}
\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.365 |
|
| 20341 |
\begin{align*}
y^{\prime } x +y&=y^{3} x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.366 |
|
| 20342 |
\begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| 20343 |
\begin{align*}
y^{\prime } x&=y^{2}-y \\
y \left (\frac {1}{2}\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| 20344 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-\frac {4 y}{x}&=x^{3}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.368 |
|
| 20345 |
\begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.369 |
|
| 20346 |
\begin{align*}
x^{\prime }&=\frac {x}{t^{2}+1} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.370 |
|
| 20347 |
\begin{align*}
x^{\prime }-x&=t x^{2} \\
x \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.371 |
|
| 20348 |
\begin{align*}
2 x^{2} y y^{\prime }+{\mathrm e}^{x} x^{4}-2 x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.372 |
|
| 20349 |
\begin{align*}
\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.372 |
|
| 20350 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.375 |
|
| 20351 |
\begin{align*}
3 x y^{3}-y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.375 |
|
| 20352 |
\begin{align*}
2 \left (x +1\right ) x y y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.376 |
|
| 20353 |
\begin{align*}
\left (3 y^{2} x^{2}-x \right ) y^{\prime }+2 x y^{3}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.378 |
|
| 20354 |
\begin{align*}
y^{\prime }-\frac {3 y}{x}&=\frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.379 |
|
| 20355 |
\begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.379 |
|
| 20356 |
\begin{align*}
y^{\prime }&=2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.382 |
|
| 20357 | \begin{align*}
2 x y^{\prime } y-y^{2}+a x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.382 |
|
| 20358 |
\begin{align*}
4 y^{\prime \prime } x +4 m y^{\prime }-\left (x -2 m -4 n \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.382 |
|
| 20359 |
\begin{align*}
\frac {3}{t^{2}}&=\left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.383 |
|
| 20360 |
\begin{align*}
y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.384 |
|
| 20361 |
\begin{align*}
b y+a y {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.384 |
|
| 20362 |
\begin{align*}
\left (x +a \right )^{2} y^{\prime }&=2 \left (x +a \right ) \left (b +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.385 |
|
| 20363 |
\begin{align*}
2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.385 |
|
| 20364 |
\begin{align*}
y^{\prime }&=t^{m} y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.385 |
|
| 20365 |
\begin{align*}
y^{\prime } y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.386 |
|
| 20366 |
\begin{align*}
u^{\prime }&=a \sqrt {1+u^{2}} \\
u \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.386 |
|
| 20367 |
\begin{align*}
\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.387 |
|
| 20368 |
\begin{align*}
y^{\prime } x +\left (\sin \left (y\right )-3 \cos \left (y\right ) x^{2}\right ) \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.388 |
|
| 20369 |
\begin{align*}
y^{\prime } x&=y+y^{2}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.388 |
|
| 20370 |
\begin{align*}
y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.389 |
|
| 20371 |
\begin{align*}
y^{\prime }&=4-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.389 |
|
| 20372 |
\begin{align*}
2 x y^{2}+2 x +\left (6 y^{3}+2 y+4 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.389 |
|
| 20373 |
\begin{align*}
\left (x +y-1\right ) y^{\prime }&=x -y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.390 |
|
| 20374 |
\begin{align*}
y^{\prime }&=\frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.391 |
|
| 20375 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=z \\
z^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.391 |
|
| 20376 | \begin{align*}
x^{\prime }&=1+\cos \left (t -x\right )^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 3.397 |
|
| 20377 |
\begin{align*}
\cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=-\sin \left (2 x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.397 |
|
| 20378 |
\begin{align*}
y^{\prime }&=\sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.397 |
|
| 20379 |
\begin{align*}
y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.398 |
|
| 20380 |
\begin{align*}
x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.399 |
|
| 20381 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime }-t y&=5 t y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.399 |
|
| 20382 |
\begin{align*}
\frac {2 x^{2}}{y^{2}+x^{2}}+\ln \left (y^{2}+x^{2}\right )+\frac {2 x y y^{\prime }}{y^{2}+x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.401 |
|
| 20383 |
\begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| 20384 |
\begin{align*}
x^{\prime }+t x^{\prime \prime }&=1 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| 20385 |
\begin{align*}
x^{2}+y \left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| 20386 |
\begin{align*}
\left (3+2 x -2 y\right ) y^{\prime }&=1+6 x -2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.404 |
|
| 20387 |
\begin{align*}
y^{\prime }&=\frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.405 |
|
| 20388 |
\begin{align*}
\left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.405 |
|
| 20389 |
\begin{align*}
y^{\prime }&=\frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.405 |
|
| 20390 |
\begin{align*}
a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.405 |
|
| 20391 |
\begin{align*}
y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.407 |
|
| 20392 |
\begin{align*}
y^{\prime }&=\frac {t y \left (4-y\right )}{t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| 20393 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| 20394 |
\begin{align*}
y^{\prime } x +2 y&=3 x -1 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.410 |
|
| 20395 | \begin{align*}
y^{\prime } \sqrt {b^{2}+y^{2}}&=\sqrt {a^{2}+x^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.411 |
|
| 20396 |
\begin{align*}
x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.411 |
|
| 20397 |
\begin{align*}
\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.412 |
|
| 20398 |
\begin{align*}
-y+y^{\prime } x&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.416 |
|
| 20399 |
\begin{align*}
y^{\prime } x&=y^{2}-y \\
y \left (2\right ) &= {\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.418 |
|
| 20400 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{2}}-\frac {y}{x}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.424 |
|