2.3.204 Problems 20301 to 20400

Table 2.939: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

20301

4422

\begin{align*} x^{2} \left (-y+y^{\prime } x \right )&=y \left (x +y\right ) \\ \end{align*}

3.338

20302

16251

\begin{align*} y^{\prime }&=2 x -1+2 y x -y \\ y \left (0\right ) &= -1 \\ \end{align*}

3.341

20303

12932

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right )&=0 \\ \end{align*}

3.342

20304

14004

\begin{align*} x -y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

3.342

20305

6846

\begin{align*} y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\ \end{align*}

3.343

20306

3543

\begin{align*} \left (3 x -y\right ) y^{\prime }&=3 y \\ \end{align*}

3.344

20307

18935

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

3.344

20308

3410

\begin{align*} y^{\prime }&=-x \,{\mathrm e}^{y} \\ \end{align*}

3.345

20309

13992

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\ \end{align*}

3.345

20310

4278

\begin{align*} x^{2} y^{3}+y&=\left (x^{3} y^{2}-x \right ) y^{\prime } \\ \end{align*}

3.347

20311

12344

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \sin \left (x \right )^{2}&=0 \\ \end{align*}

3.347

20312

7694

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+m y&=0 \\ \end{align*}

3.352

20313

15381

\begin{align*} \left (y^{3}-x \right ) y^{\prime }&=y \\ \end{align*}

3.352

20314

15600

\begin{align*} y^{\prime }&=\frac {2 y}{x}+{\mathrm e}^{x} \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

3.352

20315

19133

\begin{align*} y^{\prime }&=-x -\sqrt {x^{2}+2 y} \\ \end{align*}

3.352

20316

7382

\begin{align*} s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\ \end{align*}

3.354

20317

17978

\begin{align*} y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (y^{2}-a^{2}+x^{2}\right )&=0 \\ \end{align*}

3.354

20318

8653

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

3.355

20319

3450

\begin{align*} y^{\prime }&=\frac {2 y}{t +1} \\ y \left (0\right ) &= 6 \\ \end{align*}

3.356

20320

11402

\begin{align*} y^{\prime } x +x y^{2}-y-a \,x^{3}&=0 \\ \end{align*}

3.356

20321

14473

\begin{align*} \left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

3.356

20322

24220

\begin{align*} \left (-x^{2}+1\right ) y^{2}+x \left (y^{2} x^{2}+2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

3.356

20323

24954

\begin{align*} \left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 t y \\ \end{align*}

3.356

20324

15916

\begin{align*} y^{\prime }&=\frac {3 y}{t}+t^{5} \\ \end{align*}

3.357

20325

4835

\begin{align*} \left (x +1\right ) y^{\prime }&=\left (x +1\right )^{4}+2 y \\ \end{align*}

3.358

20326

17097

\begin{align*} y^{\prime }&=t^{2} y^{2}+y^{2}-t^{2}-1 \\ \end{align*}

3.358

20327

20322

\begin{align*} y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\ \end{align*}

3.358

20328

24957

\begin{align*} y y^{\prime }&=t \\ y \left (2\right ) &= -1 \\ \end{align*}

3.358

20329

1636

\begin{align*} y^{\prime }-y x&=y^{{3}/{2}} x \\ y \left (1\right ) &= 4 \\ \end{align*}

3.359

20330

7476

\begin{align*} y^{2}+2 y x -x^{2} y^{\prime }&=0 \\ \end{align*}

3.360

20331

11508

\begin{align*} y^{\prime } y+x y^{2}-4 x&=0 \\ \end{align*}

3.360

20332

19202

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

3.360

20333

5178

\begin{align*} x \left (a +b y\right ) y^{\prime }&=c y \\ \end{align*}

3.361

20334

25718

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (-1\right ) &= 1 \\ \end{align*}

3.361

20335

8406

\begin{align*} y^{\prime }&=y+\frac {y}{x \ln \left (x \right )} \\ y \left ({\mathrm e}\right ) &= 1 \\ \end{align*}

3.362

20336

14017

\begin{align*} y^{\prime }-x^{2} y&=x^{5} \\ \end{align*}

3.362

20337

11453

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right )&=0 \\ \end{align*}

3.363

20338

5082

\begin{align*} \left (x -2 y\right ) y^{\prime }+2 x +y&=0 \\ \end{align*}

3.364

20339

4409

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

3.365

20340

14492

\begin{align*} \cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4}&=0 \\ \end{align*}

3.365

20341

9116

\begin{align*} y^{\prime } x +y&=y^{3} x^{4} \\ \end{align*}

3.366

20342

7483

\begin{align*} y^{2}+2 y x -x^{2} y^{\prime }&=0 \\ \end{align*}

3.368

20343

8381

\begin{align*} y^{\prime } x&=y^{2}-y \\ y \left (\frac {1}{2}\right ) &= {\frac {1}{2}} \\ \end{align*}

3.368

20344

21553

\begin{align*} y^{\prime \prime } x +y^{\prime }-\frac {4 y}{x}&=x^{3}+x \\ \end{align*}

3.368

20345

16218

\begin{align*} y^{\prime }&=\frac {x}{y} \\ \end{align*}

3.369

20346

21024

\begin{align*} x^{\prime }&=\frac {x}{t^{2}+1} \\ x \left (0\right ) &= 1 \\ \end{align*}

3.370

20347

21091

\begin{align*} x^{\prime }-x&=t x^{2} \\ x \left (0\right ) &= a \\ \end{align*}

3.371

20348

2950

\begin{align*} 2 x^{2} y y^{\prime }+{\mathrm e}^{x} x^{4}-2 x y^{2}&=0 \\ \end{align*}

3.372

20349

11430

\begin{align*} \left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2&=0 \\ \end{align*}

3.372

20350

12499

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

3.375

20351

16344

\begin{align*} 3 x y^{3}-y+y^{\prime } x&=0 \\ \end{align*}

3.375

20352

5195

\begin{align*} 2 \left (x +1\right ) x y y^{\prime }&=1+y^{2} \\ \end{align*}

3.376

20353

14519

\begin{align*} \left (3 y^{2} x^{2}-x \right ) y^{\prime }+2 x y^{3}-y&=0 \\ \end{align*}

3.378

20354

1708

\begin{align*} y^{\prime }-\frac {3 y}{x}&=\frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \\ y \left (1\right ) &= 1 \\ \end{align*}

3.379

20355

19073

\begin{align*} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

3.379

20356

4633

\begin{align*} y^{\prime }&=2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \\ \end{align*}

3.382

20357

11537

\begin{align*} 2 x y^{\prime } y-y^{2}+a x&=0 \\ \end{align*}

3.382

20358

12404

\begin{align*} 4 y^{\prime \prime } x +4 m y^{\prime }-\left (x -2 m -4 n \right ) y&=0 \\ \end{align*}

3.382

20359

17076

\begin{align*} \frac {3}{t^{2}}&=\left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \\ \end{align*}

3.383

20360

4794

\begin{align*} y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y&=0 \\ \end{align*}

3.384

20361

6341

\begin{align*} b y+a y {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

3.384

20362

4943

\begin{align*} \left (x +a \right )^{2} y^{\prime }&=2 \left (x +a \right ) \left (b +y\right ) \\ \end{align*}

3.385

20363

17219

\begin{align*} 2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime }&=0 \\ \end{align*}

3.385

20364

24963

\begin{align*} y^{\prime }&=t^{m} y^{n} \\ \end{align*}

3.385

20365

4189

\begin{align*} y^{\prime } y&=x \\ \end{align*}

3.386

20366

8410

\begin{align*} u^{\prime }&=a \sqrt {1+u^{2}} \\ u \left (0\right ) &= 0 \\ \end{align*}

3.386

20367

20775

\begin{align*} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\ \end{align*}

3.387

20368

11421

\begin{align*} y^{\prime } x +\left (\sin \left (y\right )-3 \cos \left (y\right ) x^{2}\right ) \cos \left (y\right )&=0 \\ \end{align*}

3.388

20369

19234

\begin{align*} y^{\prime } x&=y+y^{2}+x^{2} \\ \end{align*}

3.388

20370

11339

\begin{align*} y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2}&=0 \\ \end{align*}

3.389

20371

15529

\begin{align*} y^{\prime }&=4-y^{2} \\ \end{align*}

3.389

20372

23898

\begin{align*} 2 x y^{2}+2 x +\left (6 y^{3}+2 y+4 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

3.389

20373

4238

\begin{align*} \left (x +y-1\right ) y^{\prime }&=x -y+1 \\ \end{align*}

3.390

20374

11892

\begin{align*} y^{\prime }&=\frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \\ \end{align*}

3.391

20375

19209

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=z \\ z^{\prime }&=x \\ \end{align*}

3.391

20376

7534

\begin{align*} x^{\prime }&=1+\cos \left (t -x\right )^{2} \\ \end{align*}

3.397

20377

17952

\begin{align*} \cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=-\sin \left (2 x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

3.397

20378

18072

\begin{align*} y^{\prime }&=\sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \\ \end{align*}

3.397

20379

16208

\begin{align*} y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\ \end{align*}

3.398

20380

7015

\begin{align*} x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\ \end{align*}

3.399

20381

25015

\begin{align*} \left (-t^{2}+1\right ) y^{\prime }-t y&=5 t y^{2} \\ \end{align*}

3.399

20382

2935

\begin{align*} \frac {2 x^{2}}{y^{2}+x^{2}}+\ln \left (y^{2}+x^{2}\right )+\frac {2 x y y^{\prime }}{y^{2}+x^{2}}&=0 \\ \end{align*}

3.401

20383

1065

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

3.403

20384

14210

\begin{align*} x^{\prime }+t x^{\prime \prime }&=1 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

3.403

20385

24130

\begin{align*} x^{2}+y \left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

3.403

20386

5087

\begin{align*} \left (3+2 x -2 y\right ) y^{\prime }&=1+6 x -2 y \\ \end{align*}

3.404

20387

3600

\begin{align*} y^{\prime }&=\frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \\ \end{align*}

3.405

20388

11618

\begin{align*} \left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y&=0 \\ \end{align*}

3.405

20389

12279

\begin{align*} y^{\prime }&=\frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \\ \end{align*}

3.405

20390

12972

\begin{align*} a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0}&=0 \\ \end{align*}

3.405

20391

19774

\begin{align*} y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\ \end{align*}

3.407

20392

1156

\begin{align*} y^{\prime }&=\frac {t y \left (4-y\right )}{t +1} \\ \end{align*}

3.409

20393

25497

\begin{align*} y^{\prime }&=\frac {y^{2}}{t^{2}} \\ \end{align*}

3.409

20394

7739

\begin{align*} y^{\prime } x +2 y&=3 x -1 \\ y \left (2\right ) &= 1 \\ \end{align*}

3.410

20395

5333

\begin{align*} y^{\prime } \sqrt {b^{2}+y^{2}}&=\sqrt {a^{2}+x^{2}} \\ \end{align*}

3.411

20396

11439

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2&=0 \\ \end{align*}

3.411

20397

7255

\begin{align*} \left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}}&=0 \\ \end{align*}

3.412

20398

24338

\begin{align*} -y+y^{\prime } x&=y \\ \end{align*}

3.416

20399

8382

\begin{align*} y^{\prime } x&=y^{2}-y \\ y \left (2\right ) &= {\frac {1}{4}} \\ \end{align*}

3.418

20400

6988

\begin{align*} y^{\prime }&=\frac {1}{x^{2}}-\frac {y}{x}-y^{2} \\ \end{align*}

3.424