| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 20201 |
\begin{align*}
y^{\prime }&=y^{2} x^{2}-4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.261 |
|
| 20202 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=2 x \left (x^{2}+1\right )^{2}+2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.263 |
|
| 20203 |
\begin{align*}
y^{\prime }+3 t^{2} y&={\mathrm e}^{-t^{3}} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.263 |
|
| 20204 |
\begin{align*}
x^{\prime }-x \tan \left (t \right )&=4 \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.263 |
|
| 20205 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.264 |
|
| 20206 |
\begin{align*}
y^{\prime }&=\frac {y}{2 x}+\frac {x^{2}}{2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.265 |
|
| 20207 |
\begin{align*}
g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.266 |
|
| 20208 |
\begin{align*}
y^{\prime }&=\frac {2 y+F \left (\frac {y}{x^{2}}\right ) x^{3}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.266 |
|
| 20209 |
\begin{align*}
y^{\prime }&=\left (1+y^{2}\right ) t \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.266 |
|
| 20210 |
\begin{align*}
y x^{\prime }&=2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.267 |
|
| 20211 |
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.269 |
|
| 20212 |
\begin{align*}
x \left (x +1\right ) y^{\prime }&=\left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.270 |
|
| 20213 |
\begin{align*}
1+y x +y^{\prime } y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.270 |
|
| 20214 |
\begin{align*}
x^{3} {\mathrm e}^{2 x^{2}+3 y^{2}}-y^{3} {\mathrm e}^{-x^{2}-2 y^{2}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.270 |
|
| 20215 |
\begin{align*}
y^{\prime }&=2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.273 |
|
| 20216 |
\begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.273 |
|
| 20217 |
\begin{align*}
2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-y^{2} x^{2}-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.274 |
|
| 20218 | \begin{align*}
x y \left (x^{2}+1\right ) y^{\prime }-y^{2}&=1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.275 |
|
| 20219 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.276 |
|
| 20220 |
\begin{align*}
2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.279 |
|
| 20221 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.279 |
|
| 20222 |
\begin{align*}
y^{\prime }&=\frac {2 x}{1+2 y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.280 |
|
| 20223 |
\begin{align*}
y^{\prime } x +y&=\frac {1}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.280 |
|
| 20224 |
\begin{align*}
y^{\prime } x -y \left (\ln \left (y x \right )-1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.283 |
|
| 20225 |
\begin{align*}
y^{\prime } x +a y^{2}-b y+c \,x^{2 b}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.283 |
|
| 20226 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.283 |
|
| 20227 |
\begin{align*}
y^{\prime }&=\frac {2 t^{5}}{5 y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.283 |
|
| 20228 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
3.283 |
|
| 20229 |
\begin{align*}
x&=y^{\prime } y+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.284 |
|
| 20230 |
\begin{align*}
2 x +3 y+\left (2 y+3 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.286 |
|
| 20231 |
\begin{align*}
x^{2} y^{\prime }+x \left (2+x \right ) y&=x \left (1-{\mathrm e}^{-2 x}\right )-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.286 |
|
| 20232 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.286 |
|
| 20233 |
\begin{align*}
\cos \left (4 x \right )-8 y^{\prime } \sin \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.286 |
|
| 20234 |
\begin{align*}
3 y^{\prime } x&=3 x^{{2}/{3}}+\left (1-3 y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.288 |
|
| 20235 |
\begin{align*}
4 x -y+\left (6 y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.289 |
|
| 20236 |
\begin{align*}
y^{\prime }&=-2+3 y-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.289 |
|
| 20237 | \begin{align*}
{y^{\prime }}^{2}+y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 3.290 |
|
| 20238 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.292 |
|
| 20239 |
\begin{align*}
y^{\prime } x -y \left (\ln \left (y x \right )-1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.292 |
|
| 20240 |
\begin{align*}
y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.293 |
|
| 20241 |
\begin{align*}
\left (y^{2}+4 \sin \left (x \right )\right ) y^{\prime }-\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.293 |
|
| 20242 |
\begin{align*}
y^{\prime } x&=2 y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.293 |
|
| 20243 |
\begin{align*}
x^{\prime \prime }&=-3 \sqrt {t} \\
x \left (1\right ) &= 4 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.294 |
|
| 20244 |
\begin{align*}
y^{\prime \prime }+a^{2} y-\cot \left (a x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.295 |
|
| 20245 |
\begin{align*}
y^{2}+\left ({\mathrm e}^{x}-y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.296 |
|
| 20246 |
\begin{align*}
x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.297 |
|
| 20247 |
\begin{align*}
y x -x&=\left (x y^{2}+x -y^{2}-1\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.297 |
|
| 20248 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.300 |
|
| 20249 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x \right ) \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.300 |
|
| 20250 |
\begin{align*}
y^{\prime \prime }&=\left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.301 |
|
| 20251 |
\begin{align*}
\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (1+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.301 |
|
| 20252 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +y&=\frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.301 |
|
| 20253 |
\begin{align*}
y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.302 |
|
| 20254 |
\begin{align*}
y^{\prime \prime }&=a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.302 |
|
| 20255 |
\begin{align*}
a^{2}-2 y x -y^{2}-\left (x +y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.304 |
|
| 20256 | \begin{align*}
t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.305 |
|
| 20257 |
\begin{align*}
-2 y+y^{\prime }&=\frac {\cos \left (t \right )}{\sqrt {y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.306 |
|
| 20258 |
\begin{align*}
y-x +x y \cot \left (x \right )+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.307 |
|
| 20259 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
3.308 |
|
| 20260 |
\begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.309 |
|
| 20261 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.310 |
|
| 20262 |
\begin{align*}
y^{3} y^{\prime \prime }+4&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.312 |
|
| 20263 |
\begin{align*}
x y^{3} y^{\prime }&=\left (-x^{2}+1\right ) \left (1+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.313 |
|
| 20264 |
\begin{align*}
y^{\prime }-3 y^{2} x^{2}&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.313 |
|
| 20265 |
\begin{align*}
\left (-2 x^{2}-3 y x \right ) y^{\prime }+y^{2}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.314 |
|
| 20266 |
\begin{align*}
y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.314 |
|
| 20267 |
\begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.315 |
|
| 20268 |
\begin{align*}
y^{\prime }&=\frac {1}{x +2 y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.316 |
|
| 20269 |
\begin{align*}
x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.316 |
|
| 20270 |
\begin{align*}
y^{\prime } x -y f \left (x^{a} y^{b}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.316 |
|
| 20271 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-5 x \right ) y^{\prime }+\left (5-6 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
3.316 |
|
| 20272 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{\sqrt {x}}}{y} \\
y \left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.317 |
|
| 20273 |
\begin{align*}
y^{\prime }+\sin \left (x +y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.317 |
|
| 20274 |
\begin{align*}
y^{\prime \prime }+a \,x^{-1+q} y^{\prime }+b \,x^{q -2} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.318 |
|
| 20275 | \begin{align*}
16 y^{\prime \prime } x +8 y^{\prime }-\left (x +a \right ) y&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 3.318 |
|
| 20276 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.319 |
|
| 20277 |
\begin{align*}
2 x \left (x^{2}-\sin \left (y\right )+1\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.320 |
|
| 20278 |
\begin{align*}
3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.323 |
|
| 20279 |
\begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.323 |
|
| 20280 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.323 |
|
| 20281 |
\begin{align*}
y^{\prime }-2 y&=\frac {x \,{\mathrm e}^{2 x}}{1-y \,{\mathrm e}^{-2 x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.324 |
|
| 20282 |
\begin{align*}
x&=t \left (1+x^{\prime }\right )+x^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.324 |
|
| 20283 |
\begin{align*}
\cos \left (y\right )^{2}+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.325 |
|
| 20284 |
\begin{align*}
9 {y^{\prime }}^{4}+8 y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.326 |
|
| 20285 |
\begin{align*}
y^{\prime }&=\frac {3 y x^{2}}{x^{3}+2 y^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.326 |
|
| 20286 |
\begin{align*}
y^{\prime }&=-\frac {2 \arctan \left (y\right )}{1+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.328 |
|
| 20287 |
\begin{align*}
\left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right )&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.329 |
|
| 20288 |
\begin{align*}
y^{\prime } x&=\left (y \ln \left (x \right )-2\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.329 |
|
| 20289 |
\begin{align*}
y^{\prime }+2 y&=t^{2}+2 t +1+{\mathrm e}^{4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.329 |
|
| 20290 |
\begin{align*}
-1+{\mathrm e}^{t y} y+y \cos \left (t y\right )+\left (1+{\mathrm e}^{t y} t +t \cos \left (t y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.329 |
|
| 20291 |
\begin{align*}
y \,{\mathrm e}^{y x}+2 y x +\left (x \,{\mathrm e}^{y x}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.330 |
|
| 20292 |
\begin{align*}
\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.330 |
|
| 20293 |
\begin{align*}
\left (a^{2}+x^{2}\right ) y^{\prime }&=b +y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.331 |
|
| 20294 | \begin{align*}
2 x +3 y+\left (2 y+3 x \right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.332 |
|
| 20295 |
\begin{align*}
y^{\prime }+{y^{\prime }}^{3}&={\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.332 |
|
| 20296 |
\begin{align*}
y^{\prime }&=-y^{3}+3 a^{2} {\mathrm e}^{2 \lambda x} y-2 a^{3} {\mathrm e}^{3 \lambda x}+a \lambda \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.332 |
|
| 20297 |
\begin{align*}
y^{\prime }&=\frac {4 y^{2}}{x^{2}}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.333 |
|
| 20298 |
\begin{align*}
y^{\prime } y+4 x \left (x +1\right )+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.335 |
|
| 20299 |
\begin{align*}
x^{\prime \prime }+\lambda ^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.337 |
|
| 20300 |
\begin{align*}
y+x^{3}+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.337 |
|