2.3.200 Problems 19901 to 20000

Table 2.931: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19901

5357

\begin{align*} {y^{\prime }}^{2}&=y+x^{2} \\ \end{align*}

3.034

19902

17144

\begin{align*} t y^{\prime }+y&=t \\ \end{align*}

3.035

19903

7525

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x +y}}{y-1} \\ \end{align*}

3.036

19904

15917

\begin{align*} y^{\prime }&=-\frac {y}{t +1}+t^{2} \\ \end{align*}

3.036

19905

20967

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ \end{align*}

3.037

19906

4795

\begin{align*} y^{\prime } x&=y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \\ \end{align*}

3.040

19907

2472

\begin{align*} \sqrt {t}\, \sin \left (t \right ) y+y^{\prime }&=0 \\ \end{align*}

3.041

19908

3527

\begin{align*} y^{\prime }&=1-\frac {\sin \left (x +y\right )}{\cos \left (x \right ) \sin \left (y\right )} \\ y \left (\frac {\pi }{4}\right ) &= \frac {\pi }{4} \\ \end{align*}

3.043

19909

22377

\begin{align*} y^{\prime }&=\frac {4 y^{2}-x^{4}}{4 y x} \\ \end{align*}

3.044

19910

13035

\begin{align*} 4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

3.046

19911

1726

\begin{align*} a y+b x y+\left (c x +d x y\right ) y^{\prime }&=0 \\ \end{align*}

3.047

19912

695

\begin{align*} y^{\prime }&=3 x^{2} \left (1+y^{2}\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

3.048

19913

11752

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -9 y&=0 \\ \end{align*}

3.049

19914

15057

\begin{align*} y^{\prime }&=\frac {-3+x +y}{y-x +1} \\ \end{align*}

3.049

19915

20270

\begin{align*} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }&=y+\sin \left (x \right ) \\ \end{align*}

3.049

19916

8663

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+2 x y^{2}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

3.050

19917

11614

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }-1&=0 \\ \end{align*}

3.050

19918

16221

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

3.051

19919

10278

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r} \\ \end{align*}

3.052

19920

15152

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

3.052

19921

22414

\begin{align*} y^{\prime }&=\frac {x -y \cos \left (x \right )}{y+\sin \left (x \right )} \\ \end{align*}

3.052

19922

1604

\begin{align*} y^{\prime }+y&=\frac {2 x \,{\mathrm e}^{-x}}{1+{\mathrm e}^{x} y} \\ \end{align*}

3.055

19923

20734

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}&=1-y^{2} \\ \end{align*}

3.055

19924

19793

\begin{align*} y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\ \end{align*}

3.056

19925

3386

\begin{align*} x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.057

19926

12381

\begin{align*} y^{\prime \prime } x -\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y&=0 \\ \end{align*}

3.057

19927

12397

\begin{align*} 2 y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

3.058

19928

1220

\begin{align*} y^{\prime }&=\frac {2 x +y}{3-x +3 y^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

3.059

19929

5271

\begin{align*} 6 y^{2} y^{\prime } x +x +2 y^{3}&=0 \\ \end{align*}

3.059

19930

17068

\begin{align*} \frac {1}{2 \sqrt {t}}+y^{2} y^{\prime }&=0 \\ \end{align*}

3.059

19931

12432

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3}&=0 \\ \end{align*}

3.060

19932

17124

\begin{align*} y^{\prime }&=y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

3.060

19933

7447

\begin{align*} x^{{10}/{3}}-2 y+y^{\prime } x&=0 \\ \end{align*}

3.062

19934

20818

\begin{align*} x^{\prime }-2 x&={\mathrm e}^{2 t} t \\ \end{align*}

3.062

19935

686

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=\left (1+y\right )^{2} \\ \end{align*}

3.063

19936

721

\begin{align*} y^{\prime } x&=2 y+\cos \left (x \right ) x^{3} \\ \end{align*}

3.063

19937

765

\begin{align*} \cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

3.063

19938

8371

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{-2 y} \sin \left (x \right )}{x^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

3.065

19939

11896

\begin{align*} y^{\prime }&=\frac {x +y+F \left (-\frac {-y+x \ln \left (x \right )}{x}\right ) x^{2}}{x} \\ \end{align*}

3.065

19940

21766

\begin{align*} x&=y-{y^{\prime }}^{2} \\ \end{align*}

3.065

19941

12693

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

3.066

19942

24258

\begin{align*} \left (x +a \right ) y^{\prime }&=b x -n y \\ \end{align*}

3.067

19943

21184

\begin{align*} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \\ x \left (\infty \right ) &= 0 \\ \end{align*}

3.068

19944

23842

\begin{align*} y^{\prime }-\frac {y}{x}&=y^{2} \\ \end{align*}

3.068

19945

9124

\begin{align*} y^{\prime } \sin \left (2 x \right )&=2 y+2 \cos \left (x \right ) \\ \end{align*}

3.069

19946

12627

\begin{align*} y^{\prime \prime }&=\frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (a -1\right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (a -1\right )-v \left (v +1\right )\right )-a \left (a +1\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

3.069

19947

22451

\begin{align*} y^{\prime }-\frac {2 y}{x}&=x^{2} \sin \left (3 x \right ) \\ \end{align*}

3.069

19948

1134

\begin{align*} y^{\prime } x&=\sqrt {1-y^{2}} \\ \end{align*}

3.070

19949

1674

\begin{align*} x \ln \left (x \right )^{2} y^{\prime }&=-4 \ln \left (x \right )^{2}+y \ln \left (x \right )+y^{2} \\ \end{align*}

3.070

19950

15870

\begin{align*} y^{\prime }&=\cos \left (y\right ) \\ y \left (0\right ) &= -\frac {\pi }{2} \\ \end{align*}

3.071

19951

15931

\begin{align*} y^{\prime }&=-{\mathrm e}^{-t^{2}} y+\cos \left (t \right ) \\ \end{align*}

3.072

19952

3225

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=\ln \left (x^{2}\right ) \\ \end{align*}

3.073

19953

11527

\begin{align*} a y y^{\prime }+b y^{2}+f \left (x \right )&=0 \\ \end{align*}

3.073

19954

11601

\begin{align*} \left (a +x^{2}+y^{2}\right ) y y^{\prime }+x \left (y^{2}+x^{2}-a \right )&=0 \\ \end{align*}

3.073

19955

17209

\begin{align*} \frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}}&=0 \\ \end{align*}

3.073

19956

11825

\begin{align*} {y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right )&=0 \\ \end{align*}

3.074

19957

14042

\begin{align*} y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime }&=0 \\ \end{align*}

3.075

19958

18050

\begin{align*} x y^{\prime } y-y^{2}&=x^{4} \\ \end{align*}

3.076

19959

4426

\begin{align*} y+\left (y x -x -y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

3.078

19960

7354

\begin{align*} \sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2}&=r \cos \left (\theta \right )^{2} \\ \end{align*}

3.078

19961

11338

\begin{align*} y^{\prime }+y^{3}+a x y^{2}&=0 \\ \end{align*}

3.081

19962

19980

\begin{align*} y&=2 y^{\prime }+3 {y^{\prime }}^{2} \\ \end{align*}

3.081

19963

4354

\begin{align*} y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime }&=0 \\ \end{align*}

3.082

19964

15553

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ \end{align*}

3.082

19965

19342

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x&=\cot \left (x \right ) \\ \end{align*}

3.084

19966

12341

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

3.085

19967

17314

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{5 t}}{y^{4}} \\ \end{align*}

3.085

19968

62

\begin{align*} y^{\prime }&=4 x^{3} y-y \\ y \left (1\right ) &= -3 \\ \end{align*}

3.086

19969

15461

\begin{align*} y^{\prime }&=x +y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

3.086

19970

20687

\begin{align*} y^{\prime }+2 y x&={\mathrm e}^{-x^{2}} \\ \end{align*}

3.086

19971

20788

\begin{align*} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y&=\cos \left (x \right ) x \\ \end{align*}

3.086

19972

9596

\begin{align*} y^{\prime \prime } x +\left (1-\cos \left (x \right )\right ) y^{\prime }+x^{2} y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(x=0\).

3.087

19973

17078

\begin{align*} \cos \left (y\right ) y^{\prime }&=8 \sin \left (8 t \right ) \\ \end{align*}

3.087

19974

1671

\begin{align*} x^{3} y^{\prime }&=2 y^{2}+2 x^{2} y-2 x^{4} \\ \end{align*}

3.089

19975

17984

\begin{align*} x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

3.089

19976

7939

\begin{align*} x y^{3}-y^{3}-{\mathrm e}^{x} x^{2}+3 y^{2} y^{\prime } x&=0 \\ \end{align*}

3.090

19977

4110

\begin{align*} x y^{\prime } y&=\left (x +1\right ) \left (1+y\right ) \\ y \left (1\right ) &= 1 \\ \end{align*}

3.091

19978

11437

\begin{align*} x^{2} y^{\prime }-y^{2}-y x -x^{2}&=0 \\ \end{align*}

3.091

19979

15953

\begin{align*} y^{\prime }&=-3 y+{\mathrm e}^{-2 t}+t^{2} \\ \end{align*}

3.091

19980

16680

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=85 \cos \left (2 \ln \left (x \right )\right ) \\ \end{align*}

3.092

19981

3648

\begin{align*} y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x +y \\ \end{align*}

3.093

19982

8361

\begin{align*} y^{\prime }&=\frac {y^{2}-1}{x^{2}-1} \\ y \left (2\right ) &= 2 \\ \end{align*}

3.093

19983

15859

\begin{align*} y^{\prime }&=\frac {t}{y-2} \\ y \left (-1\right ) &= 0 \\ \end{align*}

3.095

19984

3426

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{t}}{y} \\ y \left (\ln \left (2\right )\right ) &= -8 \\ \end{align*}

3.097

19985

14012

\begin{align*} \left (x +y\right ) y^{\prime }-1&=0 \\ \end{align*}

3.100

19986

22522

\begin{align*} r^{2} \sin \left (t \right )&=\left (2 r \cos \left (t \right )+10\right ) r^{\prime } \\ \end{align*}

3.100

19987

94

\begin{align*} y^{\prime }&=2 y x +3 x^{2} {\mathrm e}^{x^{2}} \\ y \left (0\right ) &= 5 \\ \end{align*}

3.101

19988

19381

\begin{align*} y+x^{2}&=y^{\prime } x \\ \end{align*}

3.101

19989

23889

\begin{align*} \frac {y^{5} x^{2}+y^{2}+y}{1+x^{2} y^{4}}+\frac {\left (y^{4} x^{3}+2 y x +x \right ) y^{\prime }}{1+x^{2} y^{4}}&=0 \\ \end{align*}

3.101

19990

1104

\begin{align*} 2 t y+y^{\prime }&=2 t \,{\mathrm e}^{-t^{2}} \\ \end{align*}

3.102

19991

4333

\begin{align*} x^{2}-\sin \left (y\right )^{2}+x \sin \left (2 y\right ) y^{\prime }&=0 \\ \end{align*}

3.102

19992

13909

\begin{align*} \left (a \,x^{n}+b \right ) y^{\prime \prime }+\left (c \,x^{n}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{n}+d -b \lambda \right ) y&=0 \\ \end{align*}

3.102

19993

19876

\begin{align*} x&={y^{\prime }}^{2}+y \\ \end{align*}

3.102

19994

1219

\begin{align*} y^{\prime }&=\frac {\cos \left (x \right )+1}{2-\sin \left (y\right )} \\ \end{align*}

3.103

19995

4271

\begin{align*} y^{\prime }+y&=2 x \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

3.103

19996

15059

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right )&=0 \\ \end{align*}

3.105

19997

21013

\begin{align*} x^{\prime }&=2 t x \\ x \left (0\right ) &= 4 \\ \end{align*}

3.105

19998

22135

\begin{align*} y^{\prime }-5 y&=\sin \left (x \right ) \left (x -1\right )+\left (x +1\right ) \cos \left (x \right ) \\ \end{align*}

3.105

19999

24206

\begin{align*} y \,{\mathrm e}^{y x}-2 y^{3}+\left (x \,{\mathrm e}^{y x}-6 x y^{2}-2 y\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}

3.105

20000

4683

\begin{align*} y^{\prime }&=\left (a +b y \cos \left (k x \right )\right ) y \\ \end{align*}

3.106