| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 19801 |
\begin{align*}
3 y^{2} y^{\prime } x +3 y^{3}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.970 |
|
| 19802 |
\begin{align*}
\left (-x +2\right ) y^{\prime }&=y+2 \left (-x +2\right )^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.970 |
|
| 19803 |
\begin{align*}
x y^{2} \left ({y^{\prime }}^{2}+2\right )&=2 y^{3} y^{\prime }+x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.971 |
|
| 19804 |
\begin{align*}
3 x -2 y+2 y^{2}+\left (2 y x -x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.971 |
|
| 19805 |
\begin{align*}
y^{\prime }+y&=\frac {1}{{\mathrm e}^{2 x}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.972 |
|
| 19806 |
\begin{align*}
y^{\prime } x -4 x^{2} y+2 y \ln \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.974 |
|
| 19807 |
\begin{align*}
2 y \sin \left (y x \right )+\left (2 x \sin \left (y x \right )+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.975 |
|
| 19808 |
\begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.976 |
|
| 19809 |
\begin{align*}
x^{\prime }&=-\frac {x}{t}+\frac {1}{t x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.976 |
|
| 19810 |
\begin{align*}
y^{\prime }-y x&=-x^{5}+4 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.976 |
|
| 19811 |
\begin{align*}
\left ({\mathrm e}^{x}+{\mathrm e}^{-x}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.979 |
|
| 19812 |
\begin{align*}
{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.979 |
|
| 19813 |
\begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.979 |
|
| 19814 |
\begin{align*}
\left ({\mathrm e}^{x}-1-x \right ) y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
2.981 |
|
| 19815 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.981 |
|
| 19816 |
\begin{align*}
9 x^{2} y^{\prime \prime }-15 y^{\prime } x +7 \left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.984 |
|
| 19817 |
\begin{align*}
y^{\prime }&=-\frac {y}{t}-1-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.985 |
|
| 19818 | \begin{align*}
3 y^{\prime } x -2 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.985 |
|
| 19819 |
\begin{align*}
x \ln \left (x \right ) y^{\prime }-y&=3 x^{3} \ln \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.986 |
|
| 19820 |
\begin{align*}
y^{\prime }-6 x \,{\mathrm e}^{x -y}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.987 |
|
| 19821 |
\begin{align*}
y+x \left (y^{2}+x^{2}\right )^{2}+\left (y \left (y^{2}+x^{2}\right )^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.988 |
|
| 19822 |
\begin{align*}
\sin \left (x \right ) y^{\prime }+2 y \cos \left (x \right )&=4 \cos \left (x \right )^{3} \\
y \left (\frac {\pi }{4}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.988 |
|
| 19823 |
\begin{align*}
y^{\prime }&=\left (1-y\right ) \left (-\frac {1}{t \ln \left (t \right )}-\frac {3}{100}+\frac {3 y}{100}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.988 |
|
| 19824 |
\begin{align*}
y^{\prime } x&=2 y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.990 |
|
| 19825 |
\begin{align*}
y^{\prime }&=y^{2}-a^{2} x^{2}+3 a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.990 |
|
| 19826 |
\begin{align*}
{y^{\prime }}^{2}+a y y^{\prime }-a x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.991 |
|
| 19827 |
\begin{align*}
y^{\prime }&=y^{{1}/{5}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.991 |
|
| 19828 |
\begin{align*}
y^{\prime }&=y+{\mathrm e}^{2 t} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.991 |
|
| 19829 |
\begin{align*}
y^{\prime }&=4 t y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.992 |
|
| 19830 |
\begin{align*}
\cot \left (x \right ) y^{\prime }&=y \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.993 |
|
| 19831 |
\begin{align*}
y^{\prime }-\frac {2 y}{x}&=x^{2} \cos \left (x \right ) \\
y \left (\pi \right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.993 |
|
| 19832 |
\begin{align*}
y^{\prime } x +2 y&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.994 |
|
| 19833 |
\begin{align*}
y^{\prime }-\frac {3 y}{x}&=5 x \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.995 |
|
| 19834 |
\begin{align*}
\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.996 |
|
| 19835 |
\begin{align*}
\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.996 |
|
| 19836 |
\begin{align*}
y^{\prime } x +3 y&=2 x^{5} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.997 |
|
| 19837 | \begin{align*}
b y+\left (x +a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 2.997 |
|
| 19838 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= -{\frac {5}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.998 |
|
| 19839 |
\begin{align*}
y^{\prime }&=-\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \\
y \left (\frac {\pi }{4}\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.999 |
|
| 19840 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}-x \\
y \left (1\right ) &= \pi \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.999 |
|
| 19841 |
\begin{align*}
x^{2} y^{\prime }-y^{2}-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.000 |
|
| 19842 |
\begin{align*}
x^{2} y^{\prime }+\left (1-2 x \right ) y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.000 |
|
| 19843 |
\begin{align*}
-y+y^{\prime } x&=2 x^{2}-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.000 |
|
| 19844 |
\begin{align*}
y \cos \left (y x \right )+\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.001 |
|
| 19845 |
\begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| 19846 |
\begin{align*}
y^{\prime } x +y&=2 x \\
y \left (x_{0} \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| 19847 |
\begin{align*}
1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| 19848 |
\begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| 19849 |
\begin{align*}
y^{\prime }&=\sqrt {2 x +3 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| 19850 |
\begin{align*}
y^{\prime }&=f \left (x \right )+x f \left (x \right ) y+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.003 |
|
| 19851 |
\begin{align*}
y^{\prime } x +x y^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.003 |
|
| 19852 |
\begin{align*}
x {y^{\prime }}^{2}+4 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.003 |
|
| 19853 |
\begin{align*}
y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.003 |
|
| 19854 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{6}\right ) &= -1 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
3.006 |
|
| 19855 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2}+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.007 |
|
| 19856 | \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 3.008 |
|
| 19857 |
\begin{align*}
y^{\prime \prime }+d +b y^{2}+c y+a y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.010 |
|
| 19858 |
\begin{align*}
y^{\prime }&=-y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.010 |
|
| 19859 |
\begin{align*}
y^{\prime }-2 y&=x^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.010 |
|
| 19860 |
\begin{align*}
y^{\prime } x -y+2 x^{2} y-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.011 |
|
| 19861 |
\begin{align*}
y^{\prime }&=\frac {x -y-1}{x +y+3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.012 |
|
| 19862 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.012 |
|
| 19863 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.013 |
|
| 19864 |
\begin{align*}
y^{\prime } x&=y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.013 |
|
| 19865 |
\begin{align*}
\left (2 y-4 x +1\right )^{2} y^{\prime }-\left (y-2 x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.014 |
|
| 19866 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.014 |
|
| 19867 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.016 |
|
| 19868 |
\begin{align*}
\sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.016 |
|
| 19869 |
\begin{align*}
\left (x +1\right ) y^{2}-x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.016 |
|
| 19870 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {b1} \right ) y+a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.017 |
|
| 19871 |
\begin{align*}
y+\left (y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.017 |
|
| 19872 |
\begin{align*}
-y+y^{\prime }&=t y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.018 |
|
| 19873 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.019 |
|
| 19874 |
\begin{align*}
\left (x +1\right ) y^{\prime }&={\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.020 |
|
| 19875 |
\begin{align*}
y^{\prime }+\frac {3 y}{x}&=x^{2}-4 x +3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.020 |
|
| 19876 | \begin{align*}
y^{\prime } y&=\csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.021 |
|
| 19877 |
\begin{align*}
y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.022 |
|
| 19878 |
\begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.022 |
|
| 19879 |
\begin{align*}
\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.023 |
|
| 19880 |
\begin{align*}
\cot \left (y\right )-\tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.023 |
|
| 19881 |
\begin{align*}
y^{\prime }+x^{2} y&=\left (x^{2}+1\right ) {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.023 |
|
| 19882 |
\begin{align*}
y^{\prime }&=\frac {y}{y-y^{3}+2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.023 |
|
| 19883 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.024 |
|
| 19884 |
\begin{align*}
2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-4}} \\
y \left (3\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.024 |
|
| 19885 |
\begin{align*}
y^{\prime }&=\frac {2 t y}{t^{2}+1}+t +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.025 |
|
| 19886 |
\begin{align*}
t y^{\prime \prime }+t^{2} y^{\prime }-\sin \left (t \right ) \sqrt {t}&=t^{2}-t +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.025 |
|
| 19887 |
\begin{align*}
y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.026 |
|
| 19888 |
\begin{align*}
2 t y+y^{\prime }&=16 t \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.026 |
|
| 19889 |
\begin{align*}
y^{\prime }&=\frac {2 y}{t}+\frac {y^{2}}{t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.027 |
|
| 19890 |
\begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.027 |
|
| 19891 |
\begin{align*}
1&=y^{\prime } \cos \left (y\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.028 |
|
| 19892 |
\begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=k \left (\operatorname {Heaviside}\left (t -\frac {3}{2}\right )-\operatorname {Heaviside}\left (t -\frac {5}{2}\right )\right ) \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.029 |
|
| 19893 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }-a -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.029 |
|
| 19894 |
\begin{align*}
y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.029 |
|
| 19895 | \begin{align*}
y&=\arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 3.029 |
|
| 19896 |
\begin{align*}
y^{\prime }&=y^{2}+\frac {1}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.029 |
|
| 19897 |
\begin{align*}
y^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.029 |
|
| 19898 |
\begin{align*}
x y^{\prime } y+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.030 |
|
| 19899 |
\begin{align*}
x^{\prime }&={\mathrm e}^{-2 x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.033 |
|
| 19900 |
\begin{align*}
y^{\prime }&=-\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.033 |
|