2.3.196 Problems 19501 to 19600

Table 2.923: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19501

10016

\begin{align*} y^{\prime }&=\frac {5 x^{2}-y x +y^{2}}{x^{2}} \\ \end{align*}

2.792

19502

23912

\begin{align*} y^{\prime }-\frac {y}{-x^{2}+1}&=3 \\ \end{align*}

2.792

19503

96

\begin{align*} \left (x^{2}+4\right ) y^{\prime }+3 y x&=x \\ y \left (0\right ) &= 1 \\ \end{align*}

2.793

19504

8831

\begin{align*} x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.794

19505

23129

\begin{align*} y^{\prime }-y x&=-x^{2}+1 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.794

19506

2967

\begin{align*} y^{\prime } x&=5 y+x +1 \\ \end{align*}

2.795

19507

16371

\begin{align*} y^{2}-y^{2} \cos \left (x \right )+y^{\prime }&=0 \\ \end{align*}

2.795

19508

8454

\begin{align*} y^{\prime }-y \sin \left (x \right )&=2 \sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

2.796

19509

11400

\begin{align*} y^{\prime } x +a +x y^{2}&=0 \\ \end{align*}

2.796

19510

15954

\begin{align*} x^{\prime }&=-t x \\ x \left (0\right ) &= {\mathrm e} \\ \end{align*}

2.796

19511

12453

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+b y&=0 \\ \end{align*}

2.797

19512

19405

\begin{align*} 3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.797

19513

12429

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y-f \left (x \right )&=0 \\ \end{align*}

2.798

19514

17073

\begin{align*} 4 \sinh \left (4 y\right ) y^{\prime }&=6 \cosh \left (3 x \right ) \\ \end{align*}

2.798

19515

8693

\begin{align*} y-2 y x +x^{2} y^{\prime }&=0 \\ \end{align*}

2.799

19516

11492

\begin{align*} x \ln \left (x \right ) y^{\prime }+y-a x \left (1+\ln \left (x \right )\right )&=0 \\ \end{align*}

2.800

19517

18496

\begin{align*} x^{2} y^{\prime }&=y-y x \\ y \left (1\right ) &= 2 \\ \end{align*}

2.801

19518

17918

\begin{align*} x +y-2+\left (1-x \right ) y^{\prime }&=0 \\ \end{align*}

2.802

19519

5196

\begin{align*} 3 x^{2} y y^{\prime }+1+2 x y^{2}&=0 \\ \end{align*}

2.803

19520

7016

\begin{align*} y^{\prime } x +a y+b \,x^{n}&=0 \\ \end{align*}

2.803

19521

1557

\begin{align*} 2 y+\left (x +1\right ) y^{\prime }&=\frac {\sin \left (x \right )}{x +1} \\ \end{align*}

2.806

19522

7004

\begin{align*} 2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.806

19523

12679

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 n +1\right ) \cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\left (v +n +1\right ) \left (v -n \right ) y \\ \end{align*}

2.806

19524

7861

\begin{align*} y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (y-y^{\prime } x \right )&=0 \\ \end{align*}

2.807

19525

17941

\begin{align*} \left (\frac {{\mathrm e}^{-y^{2}}}{2}-y x \right ) y^{\prime }-1&=0 \\ \end{align*}

2.807

19526

195

\begin{align*} {\mathrm e}^{x}+y \,{\mathrm e}^{y x}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

2.809

19527

2695

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=2 \delta \left (-1+t \right )-\delta \left (t -2\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.809

19528

7219

\begin{align*} \sin \left (x \right ) y^{\prime }&=y \ln \left (y\right ) \\ y \left (\frac {\pi }{3}\right ) &= {\mathrm e} \\ \end{align*}

2.809

19529

14527

\begin{align*} \left (x +1\right ) y^{\prime }+y x&={\mathrm e}^{-x} \\ \end{align*}

2.809

19530

23851

\begin{align*} x^{2} y+\left (x +1\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

2.809

19531

5187

\begin{align*} x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2}&=0 \\ \end{align*}

2.810

19532

15876

\begin{align*} w^{\prime }&=w \cos \left (w\right ) \\ w \left (0\right ) &= -1 \\ \end{align*}

2.810

19533

25694

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (-2\right ) &= {\frac {1}{2}} \\ \end{align*}

2.811

19534

5860

\begin{align*} -2 \left (\cos \left (x \right )+1\right ) \sec \left (x \right ) y-\left (2+3 \cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.812

19535

14213

\begin{align*} y^{\prime }&=1+y^{2} \\ \end{align*}

2.813

19536

14842

\begin{align*} x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x&=0 \\ \end{align*}

2.818

19537

12426

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

2.821

19538

18046

\begin{align*} y-x y^{2} \ln \left (x \right )+y^{\prime } x&=0 \\ \end{align*}

2.821

19539

20222

\begin{align*} y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\ \end{align*}

2.821

19540

9973

\begin{align*} y^{\prime }+\frac {2 y}{x}&=5 x^{2} \\ \end{align*}

2.822

19541

12456

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

2.822

19542

12466

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y&=0 \\ \end{align*}

2.822

19543

25693

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (2\right ) &= {\frac {1}{3}} \\ \end{align*}

2.822

19544

4630

\begin{align*} y^{\prime }&={\mathrm e}^{x} \sin \left (x \right )+\cot \left (x \right ) y \\ \end{align*}

2.823

19545

10065

\begin{align*} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\ y \left (0\right ) &= 3 \\ \end{align*}

2.823

19546

11354

\begin{align*} y^{\prime }-f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n} \left (a g \left (x \right )+b \right )^{-n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-g^{\prime }\left (x \right ) f \left (x \right )&=0 \\ \end{align*}

2.823

19547

8160

\begin{align*} y^{2}-1+y^{\prime } x&=0 \\ \end{align*}

2.825

19548

9530

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.825

19549

4309

\begin{align*} x \left (1+y^{2}\right )+\left (1+2 y\right ) {\mathrm e}^{-x} y^{\prime }&=0 \\ \end{align*}

2.826

19550

15717

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

2.826

19551

5266

\begin{align*} 3 y^{2} y^{\prime } x&=2 x -y^{3} \\ \end{align*}

2.827

19552

24225

\begin{align*} x \left (x^{2}-y^{2}-x \right )-y \left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 0 \\ \end{align*}

2.827

19553

16368

\begin{align*} y^{\prime } y-x y^{2}&=6 x \,{\mathrm e}^{4 x^{2}} \\ \end{align*}

2.828

19554

19106

\begin{align*} y-x y^{2} \ln \left (x \right )+y^{\prime } x&=0 \\ \end{align*}

2.828

19555

2992

\begin{align*} r^{\prime }+\left (r-\frac {1}{r}\right ) \theta &=0 \\ \end{align*}

2.829

19556

8170

\begin{align*} 2 y x +\left (x^{2}-y\right ) y^{\prime }&=0 \\ \end{align*}

2.829

19557

14459

\begin{align*} 2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime }&=0 \\ \end{align*}

2.829

19558

14544

\begin{align*} \left (x +1\right ) y^{2}+y+\left (2 y x +1\right ) y^{\prime }&=0 \\ \end{align*}

2.829

19559

23141

\begin{align*} y^{\prime } y&=y+x^{2} \\ \end{align*}

2.829

19560

2842

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

2.830

19561

24244

\begin{align*} y-\cos \left (x \right )^{2}+\cos \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.830

19562

22553

\begin{align*} y^{\prime } x +y&=x^{2} \\ y \left (1\right ) &= 2 \\ \end{align*}

2.831

19563

5901

\begin{align*} y+\left (a +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

2.832

19564

6336

\begin{align*} b y+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

2.832

19565

9999

\begin{align*} y^{\prime }&=\frac {2 y}{x} \\ \end{align*}

2.832

19566

11322

\begin{align*} y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x&=0 \\ \end{align*}

2.832

19567

16330

\begin{align*} 4 y x +\left (3 x^{2}+5 y\right ) y^{\prime }&=0 \\ \end{align*}

2.833

19568

19083

\begin{align*} y^{\prime } x +y&=x y^{2} \ln \left (x \right ) \\ \end{align*}

2.833

19569

21014

\begin{align*} x^{\prime }&=-t^{2} x \\ \end{align*}

2.833

19570

1648

\begin{align*} y^{\prime }&=\frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 y x} \\ \end{align*}

2.835

19571

24238

\begin{align*} t x^{\prime }&=6 \,{\mathrm e}^{2 t} t +x \left (2 t -1\right ) \\ \end{align*}

2.836

19572

22319

\begin{align*} y^{\prime }&=\frac {-x +3}{y+5} \\ \end{align*}

2.837

19573

11842

\begin{align*} \sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y&=0 \\ \end{align*}

2.838

19574

17944

\begin{align*} y^{\prime }-y \ln \left (2\right )&=2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \\ \end{align*}

2.838

19575

728

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+3 x^{3} y&=6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.839

19576

1732

\begin{align*} y^{3} x^{4}+y+\left (x^{5} y^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

2.839

19577

5704

\begin{align*} \ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

2.839

19578

8502

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.839

19579

9152

\begin{align*} y^{\prime } x&=2 x -6 y \\ \end{align*}

2.839

19580

17315

\begin{align*} -\frac {1}{x^{5}}+\frac {1}{x^{3}}&=\left (2 y^{4}-6 y^{9}\right ) y^{\prime } \\ \end{align*}

2.839

19581

19340

\begin{align*} y^{\prime } x -3 y&=x^{4} \\ \end{align*}

2.839

19582

21549

\begin{align*} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y&=f \left (x \right ) \\ \end{align*}

2.839

19583

5229

\begin{align*} \left (x -y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

2.841

19584

7747

\begin{align*} y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

2.841

19585

8782

\begin{align*} {\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

2.841

19586

14543

\begin{align*} 2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

2.841

19587

40

\begin{align*} y^{\prime }&=x +\frac {y^{2}}{2} \\ y \left (-2\right ) &= 0 \\ \end{align*}

2.842

19588

3586

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

2.842

19589

1693

\begin{align*} {\mathrm e}^{x} \left (y^{2} x^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime }&=0 \\ \end{align*}

2.843

19590

8308

\begin{align*} y^{\prime }&=x +y \\ y \left (1\right ) &= -3 \\ \end{align*}

2.843

19591

18494

\begin{align*} y^{\prime }&=\frac {x \left (x^{2}+1\right ) y^{5}}{6} \\ y \left (0\right ) &= -2^{{1}/{3}} \\ \end{align*}

2.843

19592

19102

\begin{align*} \left (y^{2} x^{2}-1\right ) y^{\prime }+2 x y^{3}&=0 \\ \end{align*}

2.844

19593

17286

\begin{align*} t +y-t y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

2.845

19594

112

\begin{align*} x^{2} y^{\prime }&=y x +x^{2} {\mathrm e}^{\frac {y}{x}} \\ \end{align*}

2.846

19595

1142

\begin{align*} y^{\prime }&=\frac {x y^{2}}{\sqrt {x^{2}+1}} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.846

19596

19206

\begin{align*} y^{\prime \prime } x -y^{\prime }-x^{3} y&=0 \\ \end{align*}

2.848

19597

19677

\begin{align*} x^{\prime }+2 x&={\mathrm e}^{t} \\ \end{align*}

2.848

19598

20957

\begin{align*} y^{\prime }&=y-\mu y^{2} \\ \end{align*}

2.851

19599

22581

\begin{align*} \cos \left (x \right ) y^{\prime }&=y-\sin \left (2 x \right ) \\ \end{align*}

2.851

19600

7625

\begin{align*} \left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.852