2.3.195 Problems 19401 to 19500

Table 2.921: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19401

1105

\begin{align*} 4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\ \end{align*}

2.730

19402

17119

\begin{align*} y^{\prime }&=\frac {3+y}{1+3 x} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.731

19403

7554

\begin{align*} x^{3}-y+y^{\prime } x&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

2.732

19404

7484

\begin{align*} 2 x y^{3}+1+\left (3 y^{2} x^{2}-\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

2.733

19405

11414

\begin{align*} y^{\prime } x -x \sqrt {y^{2}+x^{2}}-y&=0 \\ \end{align*}

2.733

19406

12187

\begin{align*} y^{\prime }&=\frac {-2 \cos \left (x \right ) x +2 x^{2} \sin \left (x \right )+2 x +2 y^{2}+4 y \cos \left (x \right ) x -4 y x +\cos \left (2 x \right ) x^{2}+3 x^{2}-4 x^{2} \cos \left (x \right )}{2 x} \\ \end{align*}

2.734

19407

15817

\begin{align*} y^{\prime }&=\left (y+\frac {1}{2}\right ) \left (t +y\right ) \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

2.734

19408

19636

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.734

19409

4080

\begin{align*} 5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime }&=0 \\ \end{align*}

2.735

19410

11329

\begin{align*} y^{\prime }+a y \left (y-x \right )-1&=0 \\ \end{align*}

2.735

19411

5026

\begin{align*} y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (y^{3}+1\right )^{{2}/{3}}&=0 \\ \end{align*}

2.737

19412

24378

\begin{align*} y^{2}-3 y-x +\left (2 y-3\right ) y^{\prime }&=0 \\ \end{align*}

2.738

19413

924

\begin{align*} x^{\prime }&=2 x+4 y+3 \,{\mathrm e}^{t} \\ y^{\prime }&=5 x-y-t^{2} \\ \end{align*}

2.740

19414

1649

\begin{align*} y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\ y \left (-1\right ) &= 2 \\ \end{align*}

2.740

19415

4109

\begin{align*} 2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right )&=0 \\ y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{8} \\ \end{align*}

2.740

19416

5251

\begin{align*} x \left (1-y^{2}\right ) y^{\prime }&=\left (x^{2}+1\right ) y \\ \end{align*}

2.740

19417

12329

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

2.740

19418

18479

\begin{align*} y^{\prime } y&=\left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \\ \end{align*}

2.740

19419

7246

\begin{align*} 2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.741

19420

4674

\begin{align*} y^{\prime }&=1+a \left (x -y\right ) y \\ \end{align*}

2.743

19421

17067

\begin{align*} y^{\prime }&=\frac {x}{y^{2}} \\ \end{align*}

2.744

19422

2990

\begin{align*} y^{\prime }-y x&=\frac {x}{y} \\ \end{align*}

2.745

19423

22347

\begin{align*} y^{\prime }&=y \csc \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

2.745

19424

5034

\begin{align*} x \ln \left (x \right ) y^{\prime }&=a x \left (1+\ln \left (x \right )\right )-y \\ \end{align*}

2.747

19425

11394

\begin{align*} y^{\prime } x +a y+b \,x^{n}&=0 \\ \end{align*}

2.747

19426

4307

\begin{align*} y^{\prime }&=\frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \left (y\right )} \\ \end{align*}

2.748

19427

16143

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=\delta \left (-1+t \right )-3 \delta \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.749

19428

17798

\begin{align*} x^{\prime \prime }+64 x&=0 \\ x \left (0\right ) &= {\frac {3}{4}} \\ x^{\prime }\left (0\right ) &= -2 \\ \end{align*}

2.749

19429

8167

\begin{align*} y^{\prime }&=2 x y^{2} \\ \end{align*}

2.750

19430

9934

\begin{align*} y^{\prime \prime } x +\left (-x +3\right ) y^{\prime }-5 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.750

19431

19848

\begin{align*} e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\ \end{align*}

2.750

19432

19416

\begin{align*} y^{\prime } x +y x +y-1&=0 \\ \end{align*}

2.751

19433

4706

\begin{align*} y^{\prime }&=\sqrt {{| y|}} \\ \end{align*}

2.752

19434

10000

\begin{align*} y^{\prime }&=\frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \\ \end{align*}

2.752

19435

4108

\begin{align*} y^{\prime } x +2 y&=\left (3 x +2\right ) {\mathrm e}^{3 x} \\ y \left (1\right ) &= 1 \\ \end{align*}

2.753

19436

15924

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ y \left (0\right ) &= 3 \\ \end{align*}

2.753

19437

17121

\begin{align*} y^{\prime }&={\mathrm e}^{2 x -y} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.753

19438

18486

\begin{align*} y^{\prime }&=\frac {3-2 x}{y} \\ y \left (1\right ) &= -6 \\ \end{align*}

2.753

19439

2538

\begin{align*} y^{\prime }&=1-t +y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.754

19440

11599

\begin{align*} \left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2}&=0 \\ \end{align*}

2.756

19441

16296

\begin{align*} y^{\prime }-\frac {y}{x}&=\frac {1}{y} \\ y \left (1\right ) &= 3 \\ \end{align*}

2.756

19442

4584

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ \end{align*}

2.760

19443

7121

\begin{align*} y y^{\prime \prime }&=-1+{y^{\prime }}^{2} \\ \end{align*}

2.760

19444

15614

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\ y \left (2\right ) &= 1 \\ \end{align*}

2.760

19445

25784

\begin{align*} y^{\prime }&=x \\ y \left (0\right ) &= -3 \\ \end{align*}

2.760

19446

6303

\begin{align*} y^{\prime \prime }&=a +b y+2 y^{3} \\ \end{align*}

2.761

19447

4302

\begin{align*} r y^{\prime }&=\frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \\ \end{align*}

2.763

19448

17999

\begin{align*} y&={y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \\ \end{align*}

2.763

19449

3673

\begin{align*} y^{\prime }&=\sin \left (3 x -3 y+1\right )^{2} \\ \end{align*}

2.764

19450

4246

\begin{align*} y^{\prime }&=\sin \left (x -y+1\right )^{2} \\ \end{align*}

2.764

19451

25796

\begin{align*} y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\ y \left (-1\right ) &= 0 \\ \end{align*}

2.765

19452

5292

\begin{align*} \left (a^{2} x +y \left (x^{2}-y^{2}\right )\right ) y^{\prime }+x \left (x^{2}-y^{2}\right )&=a^{2} y \\ \end{align*}

2.766

19453

22586

\begin{align*} y^{\prime } \sqrt {x^{3}+1}&=x^{2} y+x^{2} \\ \end{align*}

2.766

19454

17296

\begin{align*} y^{\prime }-\frac {2 y}{x}&=-x^{2} y \\ \end{align*}

2.767

19455

8727

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \\ \end{align*}

2.768

19456

6886

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\ \end{align*}

2.769

19457

4410

\begin{align*} {\mathrm e}^{x}+3 y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

2.770

19458

5348

\begin{align*} \left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1&=0 \\ \end{align*}

2.770

19459

9329

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\ y \left (1\right ) &= {\mathrm e} \\ y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\ \end{align*}

2.770

19460

19198

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

2.770

19461

22445

\begin{align*} 2 x +2 x y^{2}+\left (x^{2} y+2 y+3 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.771

19462

7520

\begin{align*} 2 x -y+4+\left (x -2 y-2\right ) y^{\prime }&=0 \\ \end{align*}

2.772

19463

2299

\begin{align*} \sqrt {t}\, \sin \left (t \right ) y+y^{\prime }&=0 \\ \end{align*}

2.773

19464

19685

\begin{align*} x^{\prime }&=-\lambda x \\ \end{align*}

2.774

19465

15338

\begin{align*} \left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2}&=0 \\ \end{align*}

2.775

19466

9930

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

2.776

19467

12698

\begin{align*} y^{\prime \prime }&=-\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \\ \end{align*}

2.777

19468

15044

\begin{align*} y \left (x -y\right )-x^{2} y^{\prime }&=0 \\ \end{align*}

2.777

19469

16316

\begin{align*} 2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

2.777

19470

17236

\begin{align*} -2 x -y \cos \left (y x \right )+\left (2 y-x \cos \left (y x \right )\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.777

19471

2960

\begin{align*} y^{\prime }&=y+3 \,{\mathrm e}^{x} x^{2} \\ \end{align*}

2.779

19472

18076

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

2.779

19473

2490

\begin{align*} y^{\prime }&=1-t +y^{2}-t y^{2} \\ \end{align*}

2.780

19474

8205

\begin{align*} y^{\prime }&=4+y^{2} \\ \end{align*}

2.780

19475

19345

\begin{align*} 2 y-x^{3}&=y^{\prime } x \\ \end{align*}

2.780

19476

21730

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y \left (L \right ) &= 7 \\ \end{align*}

2.780

19477

18335

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=1 \\ y \left (\infty \right ) &= 1 \\ \end{align*}

2.781

19478

3465

\begin{align*} y^{\prime }&=-\frac {2 x^{2}+y^{2}+x}{y x} \\ \end{align*}

2.782

19479

21988

\begin{align*} y^{\prime }&=\frac {x^{2}}{y^{2}} \\ \end{align*}

2.782

19480

1245

\begin{align*} 3 t +2 y&=-t y^{\prime } \\ \end{align*}

2.783

19481

11678

\begin{align*} {y^{\prime }}^{2}+\left (y^{\prime }-y\right ) {\mathrm e}^{x}&=0 \\ \end{align*}

2.783

19482

16257

\begin{align*} y^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\ \end{align*}

2.783

19483

19471

\begin{align*} y^{\prime \prime }&=4 y \\ \end{align*}

2.785

19484

24893

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

2.785

19485

9016

\begin{align*} y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\ \end{align*}

2.786

19486

9192

\begin{align*} y^{\prime } x +y&=x \\ \end{align*}

2.786

19487

12041

\begin{align*} y^{\prime }&=-\frac {i \left (54 i x^{2}+81 y^{4}+18 x^{4} y^{2}+x^{8}\right ) x}{243 y} \\ \end{align*}

2.786

19488

14445

\begin{align*} \frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime }&=0 \\ \end{align*}

2.786

19489

16240

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

2.786

19490

21717

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 0 & t <1 \\ 2 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.787

19491

20919

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

2.788

19492

22533

\begin{align*} 2 x^{2}-{\mathrm e}^{x} y-{\mathrm e}^{x} y^{\prime }&=0 \\ \end{align*}

2.788

19493

22957

\begin{align*} \left (y+2\right ) x +y \left (2+x \right ) y^{\prime }&=0 \\ \end{align*}

2.788

19494

23881

\begin{align*} 3 y^{2} x^{2}-4 y+\left (3 y^{2}-4 x +2 x^{3} y\right ) y^{\prime }&=0 \\ \end{align*}

2.788

19495

3602

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }-y+c&=0 \\ \end{align*}

2.789

19496

7126

\begin{align*} y^{\prime \prime }&=\frac {3 k y^{2}}{2} \\ \end{align*}

2.789

19497

15622

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \\ y \left (-1\right ) &= {\frac {1}{2}} \\ \end{align*}

2.789

19498

703

\begin{align*} 2 \sqrt {x}\, y^{\prime }&=\cos \left (y\right )^{2} \\ y \left (4\right ) &= \frac {\pi }{4} \\ \end{align*}

2.790

19499

8777

\begin{align*} y^{\prime }&=x^{2} \left (1+y^{2}\right ) \\ \end{align*}

2.790

19500

24907

\begin{align*} 4 y {y^{\prime }}^{2} y^{\prime \prime }&=3+{y^{\prime }}^{4} \\ \end{align*}

2.790