| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 19401 |
\begin{align*}
4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.730 |
|
| 19402 |
\begin{align*}
y^{\prime }&=\frac {3+y}{1+3 x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.731 |
|
| 19403 |
\begin{align*}
x^{3}-y+y^{\prime } x&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.732 |
|
| 19404 |
\begin{align*}
2 x y^{3}+1+\left (3 y^{2} x^{2}-\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.733 |
|
| 19405 |
\begin{align*}
y^{\prime } x -x \sqrt {y^{2}+x^{2}}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.733 |
|
| 19406 |
\begin{align*}
y^{\prime }&=\frac {-2 \cos \left (x \right ) x +2 x^{2} \sin \left (x \right )+2 x +2 y^{2}+4 y \cos \left (x \right ) x -4 y x +\cos \left (2 x \right ) x^{2}+3 x^{2}-4 x^{2} \cos \left (x \right )}{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.734 |
|
| 19407 |
\begin{align*}
y^{\prime }&=\left (y+\frac {1}{2}\right ) \left (t +y\right ) \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.734 |
|
| 19408 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.734 |
|
| 19409 |
\begin{align*}
5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.735 |
|
| 19410 |
\begin{align*}
y^{\prime }+a y \left (y-x \right )-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.735 |
|
| 19411 |
\begin{align*}
y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (y^{3}+1\right )^{{2}/{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.737 |
|
| 19412 |
\begin{align*}
y^{2}-3 y-x +\left (2 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.738 |
|
| 19413 |
\begin{align*}
x^{\prime }&=2 x+4 y+3 \,{\mathrm e}^{t} \\
y^{\prime }&=5 x-y-t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.740 |
|
| 19414 |
\begin{align*}
y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.740 |
|
| 19415 |
\begin{align*}
2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right )&=0 \\
y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{8} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.740 |
|
| 19416 |
\begin{align*}
x \left (1-y^{2}\right ) y^{\prime }&=\left (x^{2}+1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.740 |
|
| 19417 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.740 |
|
| 19418 | \begin{align*}
y^{\prime } y&=\left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.740 |
|
| 19419 |
\begin{align*}
2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.741 |
|
| 19420 |
\begin{align*}
y^{\prime }&=1+a \left (x -y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.743 |
|
| 19421 |
\begin{align*}
y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.744 |
|
| 19422 |
\begin{align*}
y^{\prime }-y x&=\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.745 |
|
| 19423 |
\begin{align*}
y^{\prime }&=y \csc \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.745 |
|
| 19424 |
\begin{align*}
x \ln \left (x \right ) y^{\prime }&=a x \left (1+\ln \left (x \right )\right )-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.747 |
|
| 19425 |
\begin{align*}
y^{\prime } x +a y+b \,x^{n}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.747 |
|
| 19426 |
\begin{align*}
y^{\prime }&=\frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \left (y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.748 |
|
| 19427 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=\delta \left (-1+t \right )-3 \delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.749 |
|
| 19428 |
\begin{align*}
x^{\prime \prime }+64 x&=0 \\
x \left (0\right ) &= {\frac {3}{4}} \\
x^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.749 |
|
| 19429 |
\begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| 19430 |
\begin{align*}
y^{\prime \prime } x +\left (-x +3\right ) y^{\prime }-5 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| 19431 |
\begin{align*}
e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| 19432 |
\begin{align*}
y^{\prime } x +y x +y-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.751 |
|
| 19433 |
\begin{align*}
y^{\prime }&=\sqrt {{| y|}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.752 |
|
| 19434 |
\begin{align*}
y^{\prime }&=\frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.752 |
|
| 19435 |
\begin{align*}
y^{\prime } x +2 y&=\left (3 x +2\right ) {\mathrm e}^{3 x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| 19436 |
\begin{align*}
y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| 19437 |
\begin{align*}
y^{\prime }&={\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| 19438 | \begin{align*}
y^{\prime }&=\frac {3-2 x}{y} \\
y \left (1\right ) &= -6 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.753 |
|
| 19439 |
\begin{align*}
y^{\prime }&=1-t +y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.754 |
|
| 19440 |
\begin{align*}
\left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.756 |
|
| 19441 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=\frac {1}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.756 |
|
| 19442 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.760 |
|
| 19443 |
\begin{align*}
y y^{\prime \prime }&=-1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.760 |
|
| 19444 |
\begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.760 |
|
| 19445 |
\begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.760 |
|
| 19446 |
\begin{align*}
y^{\prime \prime }&=a +b y+2 y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.761 |
|
| 19447 |
\begin{align*}
r y^{\prime }&=\frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.763 |
|
| 19448 |
\begin{align*}
y&={y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.763 |
|
| 19449 |
\begin{align*}
y^{\prime }&=\sin \left (3 x -3 y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.764 |
|
| 19450 |
\begin{align*}
y^{\prime }&=\sin \left (x -y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.764 |
|
| 19451 |
\begin{align*}
y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.765 |
|
| 19452 |
\begin{align*}
\left (a^{2} x +y \left (x^{2}-y^{2}\right )\right ) y^{\prime }+x \left (x^{2}-y^{2}\right )&=a^{2} y \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
2.766 |
|
| 19453 |
\begin{align*}
y^{\prime } \sqrt {x^{3}+1}&=x^{2} y+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.766 |
|
| 19454 |
\begin{align*}
y^{\prime }-\frac {2 y}{x}&=-x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.767 |
|
| 19455 |
\begin{align*}
y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.768 |
|
| 19456 |
\begin{align*}
y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.769 |
|
| 19457 | \begin{align*}
{\mathrm e}^{x}+3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.770 |
|
| 19458 |
\begin{align*}
\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.770 |
|
| 19459 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\
y \left (1\right ) &= {\mathrm e} \\
y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.770 |
|
| 19460 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.770 |
|
| 19461 |
\begin{align*}
2 x +2 x y^{2}+\left (x^{2} y+2 y+3 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.771 |
|
| 19462 |
\begin{align*}
2 x -y+4+\left (x -2 y-2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.772 |
|
| 19463 |
\begin{align*}
\sqrt {t}\, \sin \left (t \right ) y+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.773 |
|
| 19464 |
\begin{align*}
x^{\prime }&=-\lambda x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.774 |
|
| 19465 |
\begin{align*}
\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.775 |
|
| 19466 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
2.776 |
|
| 19467 |
\begin{align*}
y^{\prime \prime }&=-\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.777 |
|
| 19468 |
\begin{align*}
y \left (x -y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.777 |
|
| 19469 |
\begin{align*}
2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.777 |
|
| 19470 |
\begin{align*}
-2 x -y \cos \left (y x \right )+\left (2 y-x \cos \left (y x \right )\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.777 |
|
| 19471 |
\begin{align*}
y^{\prime }&=y+3 \,{\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.779 |
|
| 19472 |
\begin{align*}
y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.779 |
|
| 19473 |
\begin{align*}
y^{\prime }&=1-t +y^{2}-t y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.780 |
|
| 19474 |
\begin{align*}
y^{\prime }&=4+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.780 |
|
| 19475 |
\begin{align*}
2 y-x^{3}&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.780 |
|
| 19476 | \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y \left (L \right ) &= 7 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.780 |
|
| 19477 |
\begin{align*}
4 y^{\prime \prime } x +2 y^{\prime }+y&=1 \\
y \left (\infty \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.781 |
|
| 19478 |
\begin{align*}
y^{\prime }&=-\frac {2 x^{2}+y^{2}+x}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.782 |
|
| 19479 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.782 |
|
| 19480 |
\begin{align*}
3 t +2 y&=-t y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.783 |
|
| 19481 |
\begin{align*}
{y^{\prime }}^{2}+\left (y^{\prime }-y\right ) {\mathrm e}^{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.783 |
|
| 19482 |
\begin{align*}
y^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.783 |
|
| 19483 |
\begin{align*}
y^{\prime \prime }&=4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.785 |
|
| 19484 |
\begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.785 |
|
| 19485 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.786 |
|
| 19486 |
\begin{align*}
y^{\prime } x +y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.786 |
|
| 19487 |
\begin{align*}
y^{\prime }&=-\frac {i \left (54 i x^{2}+81 y^{4}+18 x^{4} y^{2}+x^{8}\right ) x}{243 y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.786 |
|
| 19488 |
\begin{align*}
\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.786 |
|
| 19489 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.786 |
|
| 19490 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} 0 & t <1 \\ 2 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.787 |
|
| 19491 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.788 |
|
| 19492 |
\begin{align*}
2 x^{2}-{\mathrm e}^{x} y-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.788 |
|
| 19493 |
\begin{align*}
\left (y+2\right ) x +y \left (2+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.788 |
|
| 19494 |
\begin{align*}
3 y^{2} x^{2}-4 y+\left (3 y^{2}-4 x +2 x^{3} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.788 |
|
| 19495 |
\begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime }-y+c&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.789 |
|
| 19496 | \begin{align*}
y^{\prime \prime }&=\frac {3 k y^{2}}{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.789 |
|
| 19497 |
\begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.789 |
|
| 19498 |
\begin{align*}
2 \sqrt {x}\, y^{\prime }&=\cos \left (y\right )^{2} \\
y \left (4\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.790 |
|
| 19499 |
\begin{align*}
y^{\prime }&=x^{2} \left (1+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.790 |
|
| 19500 |
\begin{align*}
4 y {y^{\prime }}^{2} y^{\prime \prime }&=3+{y^{\prime }}^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.790 |
|