2.3.197 Problems 19601 to 19700

Table 2.925: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19601

12351

\begin{align*} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \\ \end{align*}

2.852

19602

14472

\begin{align*} 8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime }&=0 \\ y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{4} \\ \end{align*}

2.853

19603

17945

\begin{align*} y^{\prime }-y&=-2 \,{\mathrm e}^{-x} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

2.853

19604

20803

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&={\mathrm e}^{x} x^{2} \\ \end{align*}

2.855

19605

706

\begin{align*} y^{\prime }+3 y&=2 x \,{\mathrm e}^{-3 x} \\ \end{align*}

2.856

19606

42

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

2.858

19607

787

\begin{align*} {\mathrm e}^{x}+y \,{\mathrm e}^{y x}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

2.858

19608

12380

\begin{align*} y^{\prime \prime } x -2 \left (x -1\right ) y^{\prime }-y&=0 \\ \end{align*}

2.858

19609

8345

\begin{align*} y \,{\mathrm e}^{x} y^{\prime }&={\mathrm e}^{-y}+{\mathrm e}^{-2 x -y} \\ \end{align*}

2.859

19610

19847

\begin{align*} e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\ \end{align*}

2.859

19611

20805

\begin{align*} y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-\cot \left (x \right ) y&=\sin \left (x \right )^{2} \\ \end{align*}

2.859

19612

1728

\begin{align*} 2 y+3 \left (x^{2}+x^{2} y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.861

19613

8543

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.861

19614

15058

\begin{align*} y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\ \end{align*}

2.861

19615

3408

\begin{align*} y^{\prime }&=y x \\ \end{align*}

2.862

19616

4823

\begin{align*} y^{\prime } x +x +\tan \left (x +y\right )&=0 \\ \end{align*}

2.862

19617

15875

\begin{align*} w^{\prime }&=w \cos \left (w\right ) \\ w \left (0\right ) &= 2 \\ \end{align*}

2.862

19618

17122

\begin{align*} y^{\prime }&=\frac {3 y+1}{x +3} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.862

19619

23139

\begin{align*} p^{\prime }&=a p-b p^{2} \\ \end{align*}

2.862

19620

10318

\begin{align*} y^{\prime }&=\sqrt {1+6 x +y} \\ \end{align*}

2.865

19621

24361

\begin{align*} 2 x -3 y+4+3 \left (x -1\right ) y^{\prime }&=0 \\ y \left (3\right ) &= 2 \\ \end{align*}

2.865

19622

19684

\begin{align*} t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x&=0 \\ \end{align*}

2.866

19623

15293

\begin{align*} x^{\prime }&=-3 x+3 y+z+5 \sin \left (2 t \right ) \\ y^{\prime }&=x-5 y-3 z+5 \cos \left (2 t \right ) \\ z^{\prime }&=-3 x+7 y+3 z+23 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

2.867

19624

23906

\begin{align*} y^{\prime }-2 y&=\cos \left (3 x \right ) \\ \end{align*}

2.867

19625

1232

\begin{align*} \left ({\mathrm e}^{x}+1\right ) y^{\prime }&=y-{\mathrm e}^{x} y \\ \end{align*}

2.868

19626

12398

\begin{align*} 2 y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

2.868

19627

22460

\begin{align*} y^{\prime } x&=2 x^{2} y+y \ln \left (y\right ) \\ \end{align*}

2.868

19628

25656

\begin{align*} y^{2}-1+y^{\prime } x&=0 \\ \end{align*}

2.868

19629

17217

\begin{align*} 3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime }&=0 \\ \end{align*}

2.869

19630

24293

\begin{align*} y-\sin \left (x \right )^{2}+\sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.869

19631

7129

\begin{align*} r^{\prime \prime }&=\frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \\ \end{align*}

2.871

19632

11694

\begin{align*} a {y^{\prime }}^{2}+y^{\prime } y-x&=0 \\ \end{align*}

2.871

19633

17730

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (16 x^{2}-25\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.871

19634

22448

\begin{align*} y^{\prime }+\frac {y}{x}&=1 \\ \end{align*}

2.871

19635

17151

\begin{align*} y^{\prime }-\frac {3 t y}{t^{2}-4}&=t \\ \end{align*}

2.872

19636

17792

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +\left (-2 x^{2}+7\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.872

19637

22607

\begin{align*} x^{2} y+2 y^{4}+\left (x^{3}+3 x y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.872

19638

21277

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}

2.873

19639

22535

\begin{align*} x +2 y+y^{\prime } x&=0 \\ \end{align*}

2.873

19640

5282

\begin{align*} \left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2}&=0 \\ \end{align*}

2.874

19641

11636

\begin{align*} \left (\ln \left (y\right )+x \right ) y^{\prime }-1&=0 \\ \end{align*}

2.874

19642

17907

\begin{align*} \left (x +1\right ) y^{\prime }&=y-1 \\ \end{align*}

2.874

19643

25696

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (\frac {1}{2}\right ) &= -4 \\ \end{align*}

2.874

19644

12497

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {\left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )-\left (n +1\right ) x \operatorname {LegendreP}\left (n , x\right )}{x^{2}-1}&=0 \\ \end{align*}

2.875

19645

1154

\begin{align*} y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.876

19646

5002

\begin{align*} x \left (-x^{4}+1\right ) y^{\prime }&=2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y \\ \end{align*}

2.876

19647

727

\begin{align*} \left (x^{2}+4\right ) y^{\prime }+3 y x&=x \\ y \left (0\right ) &= 1 \\ \end{align*}

2.878

19648

4222

\begin{align*} x^{2} y^{\prime }-y^{2}&=0 \\ y \left (1\right ) &= -1 \\ \end{align*}

2.878

19649

11568

\begin{align*} 2 y x +x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.879

19650

12348

\begin{align*} y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y&=0 \\ \end{align*}

2.879

19651

25489

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

2.879

19652

12874

\begin{align*} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right )&=0 \\ \end{align*}

2.880

19653

20786

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

2.880

19654

13706

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y&=0 \\ \end{align*}

2.881

19655

16200

\begin{align*} x^{2} y^{\prime }+x y^{2}&=x \\ \end{align*}

2.881

19656

5206

\begin{align*} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\ \end{align*}

2.882

19657

18557

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.882

19658

24476

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.886

19659

711

\begin{align*} y+3 y^{\prime } x&=12 x \\ \end{align*}

2.887

19660

17107

\begin{align*} y^{\prime }&=x^{3} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.887

19661

2921

\begin{align*} {\mathrm e}^{x} y-2 x +{\mathrm e}^{x} y^{\prime }&=0 \\ \end{align*}

2.888

19662

11707

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y+a y&=0 \\ \end{align*}

2.888

19663

2936

\begin{align*} y^{\prime } x +\ln \left (x \right )-y&=0 \\ \end{align*}

2.889

19664

21624

\begin{align*} y^{\prime \prime }+4 y&=0 \\ \end{align*}

2.889

19665

4530

\begin{align*} y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y&=40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.890

19666

14027

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-y x&=a x y^{2} \\ \end{align*}

2.890

19667

14538

\begin{align*} y^{\prime }&=\frac {x y}{x^{2}+1} \\ y \left (\sqrt {15}\right ) &= 2 \\ \end{align*}

2.891

19668

19988

\begin{align*} y&=y^{\prime } x +\arcsin \left (y^{\prime }\right ) \\ \end{align*}

2.891

19669

3288

\begin{align*} \left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\ \end{align*}

2.892

19670

5041

\begin{align*} y^{\prime } y+4 x \left (x +1\right )+y^{2}&=0 \\ \end{align*}

2.893

19671

1702

\begin{align*} {\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.894

19672

701

\begin{align*} y^{\prime }&=2 x y^{2}+3 y^{2} x^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

2.895

19673

7693

\begin{align*} y^{\prime }+\frac {2 y}{x}-x^{3}&=0 \\ \end{align*}

2.895

19674

24281

\begin{align*} y x +\sqrt {x^{2}+1}\, y^{\prime }&=0 \\ \end{align*}

2.896

19675

2957

\begin{align*} y^{\prime } x +2 y&=x^{2} \\ \end{align*}

2.897

19676

4790

\begin{align*} y^{\prime } x +x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2}&=0 \\ \end{align*}

2.897

19677

24201

\begin{align*} 2 x y \cos \left (x^{2}\right )-2 y x +1+\left (\sin \left (x^{2}\right )-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.897

19678

7404

\begin{align*} y^{\prime }&=x^{2} \left (1+y\right ) \\ y \left (0\right ) &= 3 \\ \end{align*}

2.898

19679

12051

\begin{align*} y^{\prime }&=-\frac {i \left (16 i x^{2}+16 y^{4}+8 x^{4} y^{2}+x^{8}\right ) x}{32 y} \\ \end{align*}

2.898

19680

15874

\begin{align*} w^{\prime }&=w \cos \left (w\right ) \\ w \left (3\right ) &= 1 \\ \end{align*}

2.898

19681

22547

\begin{align*} 2 y+3 x +y^{\prime } x&=0 \\ \end{align*}

2.899

19682

2325

\begin{align*} y^{\prime }&=\frac {3 t^{2}+4 t +2}{-2+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

2.900

19683

6384

\begin{align*} 2 y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+y^{\prime \prime } x&=b \\ \end{align*}

2.900

19684

19088

\begin{align*} y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}}&=0 \\ \end{align*}

2.900

19685

11826

\begin{align*} 2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x&=0 \\ \end{align*}

2.901

19686

1600

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

2.902

19687

22054

\begin{align*} y+x^{3}+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

2.902

19688

7573

\begin{align*} 2 y^{\prime \prime }+18 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

2.905

19689

2984

\begin{align*} \sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t}&=0 \\ \end{align*}

2.908

19690

7935

\begin{align*} y^{\prime } x&=2 y+{\mathrm e}^{x} x^{3} \\ y \left (1\right ) &= 0 \\ \end{align*}

2.908

19691

24366

\begin{align*} 2 y \left (x^{2}-y+x \right )+\left (x^{2}-2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.908

19692

18563

\begin{align*} y^{\prime }&=t \left (3-y\right ) y \\ \end{align*}

2.909

19693

25828

\begin{align*} x \sqrt {1+y^{2}}&=y y^{\prime } \sqrt {x^{2}+1} \\ \end{align*}

2.909

19694

674

\begin{align*} y^{\prime } y&=x -1 \\ y \left (1\right ) &= 0 \\ \end{align*}

2.910

19695

25403

\begin{align*} y^{\prime }&=5 \\ y \left (0\right ) &= 2 \\ \end{align*}

2.910

19696

8246

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 3 \\ \end{align*}

2.912

19697

18743

\begin{align*} y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

2.912

19698

2323

\begin{align*} y^{\prime }&=\frac {2 t}{y+t^{2} y} \\ y \left (2\right ) &= 3 \\ \end{align*}

2.913

19699

12966

\begin{align*} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y&=0 \\ \end{align*}

2.913

19700

17245

\begin{align*} 2 t +\tan \left (y\right )+\left (t -t^{2} \tan \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

2.914