| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 19301 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }-y&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
2.687 |
|
| 19302 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.687 |
|
| 19303 |
\begin{align*}
y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.687 |
|
| 19304 |
\begin{align*}
y^{\prime }&=2 x -1+2 y x -y \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.687 |
|
| 19305 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.687 |
|
| 19306 |
\begin{align*}
\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.688 |
|
| 19307 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.688 |
|
| 19308 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
2.688 |
|
| 19309 |
\begin{align*}
\cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=2 x \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.688 |
|
| 19310 |
\begin{align*}
y^{\prime }&=6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.690 |
|
| 19311 |
\begin{align*}
y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.691 |
|
| 19312 |
\begin{align*}
x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.691 |
|
| 19313 |
\begin{align*}
\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.691 |
|
| 19314 |
\begin{align*}
\cos \left (x \right ) y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.691 |
|
| 19315 |
\begin{align*}
x \left (x y^{2}+1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| 19316 |
\begin{align*}
\left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.692 |
|
| 19317 |
\begin{align*}
2 y^{2}+2 y+4 x^{2}+\left (2 y x +x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| 19318 | \begin{align*}
y^{\prime } x -4 y&=\sqrt {y}\, x^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.692 |
|
| 19319 |
\begin{align*}
y^{\prime } x +y^{2}&=1 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| 19320 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| 19321 |
\begin{align*}
y^{\prime }-y&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| 19322 |
\begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| 19323 |
\begin{align*}
y^{\prime }&=x y^{2}+3 y^{2}+x +3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| 19324 |
\begin{align*}
10 x^{\prime \prime }+\frac {x}{10}&=0 \\
x \left (0\right ) &= -5 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| 19325 |
\begin{align*}
y^{\prime }&=4 x -2 y \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.695 |
|
| 19326 |
\begin{align*}
\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.696 |
|
| 19327 |
\begin{align*}
x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.696 |
|
| 19328 |
\begin{align*}
3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.696 |
|
| 19329 |
\begin{align*}
y+1+\left (y-1\right ) \left (t^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.696 |
|
| 19330 |
\begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.697 |
|
| 19331 |
\begin{align*}
x y^{\prime } y&=y-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.697 |
|
| 19332 |
\begin{align*}
-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.697 |
|
| 19333 |
\begin{align*}
y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.697 |
|
| 19334 |
\begin{align*}
\left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-x^{n -1} a n -1\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.697 |
|
| 19335 |
\begin{align*}
y&=\frac {2 a {y^{\prime }}^{2}}{\left (1+{y^{\prime }}^{2}\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.697 |
|
| 19336 |
\begin{align*}
4 y^{2}+10 y x -4 y+8+x \left (2 x +2 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.697 |
|
| 19337 |
\begin{align*}
y^{\prime }&=-\frac {2 y}{x}-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.698 |
|
| 19338 | \begin{align*}
y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{-\sin \left (x \right )}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.700 |
|
| 19339 |
\begin{align*}
v^{\prime }&=t^{2} v-2-2 v+t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.700 |
|
| 19340 |
\begin{align*}
3 t y^{\prime }&=y \cos \left (t \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| 19341 |
\begin{align*}
4 x^{2} y^{\prime \prime }+2 x \left (-x +2\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| 19342 |
\begin{align*}
y^{\prime }&=y^{2} {\mathrm e}^{-t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| 19343 |
\begin{align*}
y^{\prime }&=\frac {2+\sqrt {x}}{2+\sqrt {y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.701 |
|
| 19344 |
\begin{align*}
x^{\prime }+\frac {x}{y}&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| 19345 |
\begin{align*}
5 x -y+3 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| 19346 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.702 |
|
| 19347 |
\begin{align*}
2 y \ln \left (x \right ) \ln \left (y\right )+x \left (\ln \left (x \right )^{2}+\ln \left (y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.702 |
|
| 19348 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.705 |
|
| 19349 |
\begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.705 |
|
| 19350 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.706 |
|
| 19351 |
\begin{align*}
x^{\prime }&=\frac {t^{2}}{x+t^{3} x} \\
x \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.706 |
|
| 19352 |
\begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| 19353 |
\begin{align*}
x y^{\prime } y&=3 x^{6}+6 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| 19354 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| 19355 |
\begin{align*}
y^{\prime }&=t y^{3}-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| 19356 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (-2\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| 19357 | \begin{align*}
y^{\prime }-\frac {y}{x}&=-\frac {1}{2 y} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.707 |
|
| 19358 |
\begin{align*}
y^{\prime }&=-b \sqrt {y}+a y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| 19359 |
\begin{align*}
y \,{\mathrm e}^{-2 x}+y^{3}-{\mathrm e}^{-2 x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| 19360 |
\begin{align*}
y^{\prime }&=1+3 \tan \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| 19361 |
\begin{align*}
x^{\prime }&=t x-t^{3} \\
x \left (0\right ) &= a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.709 |
|
| 19362 |
\begin{align*}
x \left (a +y^{3} b x \right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.711 |
|
| 19363 |
\begin{align*}
y+y^{\prime }&=\cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.711 |
|
| 19364 |
\begin{align*}
y^{\prime \prime } x +y^{\prime } x +\left (x^{4}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.712 |
|
| 19365 |
\begin{align*}
y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.712 |
|
| 19366 |
\begin{align*}
x^{\prime }&=2 x+4 y+3 \,{\mathrm e}^{t} \\
y^{\prime }&=5 x-y-t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.713 |
|
| 19367 |
\begin{align*}
x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.713 |
|
| 19368 |
\begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.714 |
|
| 19369 |
\begin{align*}
1+y^{4}+x y^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.714 |
|
| 19370 |
\begin{align*}
y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.715 |
|
| 19371 |
\begin{align*}
y^{\prime } x +\left (a +b \,x^{n} y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.715 |
|
| 19372 |
\begin{align*}
y y^{\prime \prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.715 |
|
| 19373 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.715 |
|
| 19374 |
\begin{align*}
\ln \left (y\right ) x +y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.716 |
|
| 19375 |
\begin{align*}
x^{2} {\mathrm e}^{y+x^{2}} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{y+x^{2}}-12 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.717 |
|
| 19376 | \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.717 |
|
| 19377 |
\begin{align*}
x +y^{\prime }&=x \,{\mathrm e}^{\left (n -1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.717 |
|
| 19378 |
\begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.719 |
|
| 19379 |
\begin{align*}
y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.719 |
|
| 19380 |
\begin{align*}
x^{2} y^{n} y^{\prime }&=2 y^{\prime } x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.720 |
|
| 19381 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }-y&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
2.721 |
|
| 19382 |
\begin{align*}
\ln \left (y^{\prime }\right )+y^{\prime } x +a&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| 19383 |
\begin{align*}
a {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| 19384 |
\begin{align*}
y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y&=4 x \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.721 |
|
| 19385 |
\begin{align*}
2 y^{\prime } y-x y^{2}-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| 19386 |
\begin{align*}
4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| 19387 |
\begin{align*}
e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| 19388 |
\begin{align*}
y^{\prime }&=4 x^{3} y-y \\
y \left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.722 |
|
| 19389 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=2 x \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.722 |
|
| 19390 |
\begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.723 |
|
| 19391 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (8+5 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.724 |
|
| 19392 |
\begin{align*}
y^{\prime }&=\frac {y \left (-{\mathrm e}^{x}+y\right )}{{\mathrm e}^{x}-2 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.724 |
|
| 19393 |
\begin{align*}
2 y y^{\prime \prime }+y^{2}&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.725 |
|
| 19394 |
\begin{align*}
y^{\prime }-\frac {2 y}{x}&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.725 |
|
| 19395 | \begin{align*}
x \,{\mathrm e}^{-y^{2}}+y^{\prime } y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.726 |
|
| 19396 |
\begin{align*}
\frac {y^{\prime \prime }}{y^{\prime }}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.727 |
|
| 19397 |
\begin{align*}
{y^{\prime \prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.727 |
|
| 19398 |
\begin{align*}
x^{\prime }&=a_{1} x+b_{1} y+c_{1} \\
y^{\prime }&=a_{2} x+b_{2} y+c_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.727 |
|
| 19399 |
\begin{align*}
\sin \left (t \right )^{2}&=\cos \left (y\right )^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.729 |
|
| 19400 |
\begin{align*}
x^{\prime }&=\cos \left (x\right ) \cos \left (t \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.729 |
|