2.3.194 Problems 19301 to 19400

Table 2.919: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19301

3388

\begin{align*} y^{\prime \prime } x +3 y^{\prime }-y&=x \\ \end{align*}
Series expansion around \(x=0\).

2.687

19302

8343

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

2.687

19303

15918

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

2.687

19304

16225

\begin{align*} y^{\prime }&=2 x -1+2 y x -y \\ y \left (0\right ) &= 2 \\ \end{align*}

2.687

19305

17713

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.687

19306

5486

\begin{align*} \left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y&=0 \\ \end{align*}

2.688

19307

11698

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime }-y&=0 \\ \end{align*}

2.688

19308

13355

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \\ \end{align*}

2.688

19309

17934

\begin{align*} \cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=2 x \\ y \left (0\right ) &= 0 \\ \end{align*}

2.688

19310

4648

\begin{align*} y^{\prime }&=6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \\ \end{align*}

2.690

19311

8779

\begin{align*} y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

2.691

19312

11696

\begin{align*} x {y^{\prime }}^{2}-y&=0 \\ \end{align*}

2.691

19313

11785

\begin{align*} \left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y&=0 \\ \end{align*}

2.691

19314

23299

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

2.691

19315

5278

\begin{align*} x \left (x y^{2}+1\right ) y^{\prime }+y&=0 \\ \end{align*}

2.692

19316

5749

\begin{align*} \left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

2.692

19317

7482

\begin{align*} 2 y^{2}+2 y+4 x^{2}+\left (2 y x +x \right ) y^{\prime }&=0 \\ \end{align*}

2.692

19318

19078

\begin{align*} y^{\prime } x -4 y&=\sqrt {y}\, x^{2} \\ \end{align*}

2.692

19319

23130

\begin{align*} y^{\prime } x +y^{2}&=1 \\ y \left (-2\right ) &= 1 \\ \end{align*}

2.692

19320

24041

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \\ \end{align*}

2.692

19321

7918

\begin{align*} y^{\prime }-y&=y x \\ \end{align*}

2.694

19322

10070

\begin{align*} y^{\prime }&=\sqrt {1-y^{2}} \\ \end{align*}

2.694

19323

16357

\begin{align*} y^{\prime }&=x y^{2}+3 y^{2}+x +3 \\ \end{align*}

2.694

19324

17805

\begin{align*} 10 x^{\prime \prime }+\frac {x}{10}&=0 \\ x \left (0\right ) &= -5 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

2.694

19325

24265

\begin{align*} y^{\prime }&=4 x -2 y \\ y \left (0\right ) &= -1 \\ \end{align*}

2.695

19326

5351

\begin{align*} \left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y&=0 \\ \end{align*}

2.696

19327

11441

\begin{align*} x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2&=0 \\ \end{align*}

2.696

19328

17968

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.696

19329

24968

\begin{align*} y+1+\left (y-1\right ) \left (t^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

2.696

19330

9040

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.697

19331

9090

\begin{align*} x y^{\prime } y&=y-1 \\ \end{align*}

2.697

19332

9199

\begin{align*} -\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

2.697

19333

13677

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

2.697

19334

13918

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-x^{n -1} a n -1\right ) y&=0 \\ \end{align*}

2.697

19335

20429

\begin{align*} y&=\frac {2 a {y^{\prime }}^{2}}{\left (1+{y^{\prime }}^{2}\right )^{2}} \\ \end{align*}

2.697

19336

24374

\begin{align*} 4 y^{2}+10 y x -4 y+8+x \left (2 x +2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

2.697

19337

16977

\begin{align*} y^{\prime }&=-\frac {2 y}{x}-3 \\ \end{align*}

2.698

19338

11309

\begin{align*} y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{-\sin \left (x \right )}&=0 \\ \end{align*}

2.700

19339

15789

\begin{align*} v^{\prime }&=t^{2} v-2-2 v+t^{2} \\ \end{align*}

2.700

19340

2499

\begin{align*} 3 t y^{\prime }&=y \cos \left (t \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

2.701

19341

9926

\begin{align*} 4 x^{2} y^{\prime \prime }+2 x \left (-x +2\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.701

19342

14890

\begin{align*} y^{\prime }&=y^{2} {\mathrm e}^{-t^{2}} \\ \end{align*}

2.701

19343

16245

\begin{align*} y^{\prime }&=\frac {2+\sqrt {x}}{2+\sqrt {y}} \\ \end{align*}

2.701

19344

17331

\begin{align*} x^{\prime }+\frac {x}{y}&=y^{2} \\ \end{align*}

2.701

19345

23202

\begin{align*} 5 x -y+3 y^{\prime } x&=0 \\ \end{align*}

2.701

19346

20845

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

2.702

19347

23865

\begin{align*} 2 y \ln \left (x \right ) \ln \left (y\right )+x \left (\ln \left (x \right )^{2}+\ln \left (y\right )^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.702

19348

7975

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=2 \\ \end{align*}

2.705

19349

8189

\begin{align*} 3 y^{\prime } x +5 y&=10 \\ \end{align*}

2.705

19350

15344

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}}&=0 \\ \end{align*}

2.706

19351

15803

\begin{align*} x^{\prime }&=\frac {t^{2}}{x+t^{3} x} \\ x \left (0\right ) &= -2 \\ \end{align*}

2.706

19352

126

\begin{align*} x^{2} y^{\prime }+2 y x&=5 y^{4} \\ \end{align*}

2.707

19353

1670

\begin{align*} x y^{\prime } y&=3 x^{6}+6 y^{2} \\ \end{align*}

2.707

19354

2488

\begin{align*} \left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

2.707

19355

2541

\begin{align*} y^{\prime }&=t y^{3}-y \\ y \left (0\right ) &= 1 \\ \end{align*}

2.707

19356

8211

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (-2\right ) &= {\frac {1}{2}} \\ \end{align*}

2.707

19357

23165

\begin{align*} y^{\prime }-\frac {y}{x}&=-\frac {1}{2 y} \\ \end{align*}

2.707

19358

1190

\begin{align*} y^{\prime }&=-b \sqrt {y}+a y \\ \end{align*}

2.708

19359

7494

\begin{align*} y \,{\mathrm e}^{-2 x}+y^{3}-{\mathrm e}^{-2 x} y^{\prime }&=0 \\ \end{align*}

2.708

19360

19396

\begin{align*} y^{\prime }&=1+3 \tan \left (x \right ) y \\ \end{align*}

2.708

19361

21047

\begin{align*} x^{\prime }&=t x-t^{3} \\ x \left (0\right ) &= a^{2} \\ \end{align*}

2.709

19362

5315

\begin{align*} x \left (a +y^{3} b x \right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y&=0 \\ \end{align*}

2.711

19363

15914

\begin{align*} y+y^{\prime }&=\cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \\ \end{align*}

2.711

19364

9941

\begin{align*} y^{\prime \prime } x +y^{\prime } x +\left (x^{4}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.712

19365

17470

\begin{align*} y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.712

19366

603

\begin{align*} x^{\prime }&=2 x+4 y+3 \,{\mathrm e}^{t} \\ y^{\prime }&=5 x-y-t^{2} \\ \end{align*}

2.713

19367

1646

\begin{align*} x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\ \end{align*}

2.713

19368

9946

\begin{align*} y^{\prime \prime } x -\left (2+x \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.714

19369

16323

\begin{align*} 1+y^{4}+x y^{3} y^{\prime }&=0 \\ \end{align*}

2.714

19370

1155

\begin{align*} y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\ \end{align*}

2.715

19371

4791

\begin{align*} y^{\prime } x +\left (a +b \,x^{n} y\right ) y&=0 \\ \end{align*}

2.715

19372

6420

\begin{align*} y y^{\prime \prime }&=a \\ \end{align*}

2.715

19373

14162

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\ \end{align*}

2.715

19374

18578

\begin{align*} \ln \left (y\right ) x +y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\ \end{align*}

2.716

19375

1694

\begin{align*} x^{2} {\mathrm e}^{y+x^{2}} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{y+x^{2}}-12 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.717

19376

14438

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.717

19377

20282

\begin{align*} x +y^{\prime }&=x \,{\mathrm e}^{\left (n -1\right ) y} \\ \end{align*}

2.717

19378

14455

\begin{align*} y^{2}+2 y x -x^{2} y^{\prime }&=0 \\ \end{align*}

2.719

19379

20418

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\ \end{align*}

2.719

19380

18067

\begin{align*} x^{2} y^{n} y^{\prime }&=2 y^{\prime } x -y \\ \end{align*}

2.720

19381

3387

\begin{align*} y^{\prime \prime } x +3 y^{\prime }-y&=x \\ \end{align*}
Series expansion around \(x=0\).

2.721

19382

5701

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a&=y \\ \end{align*}

2.721

19383

6350

\begin{align*} a {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

2.721

19384

8460

\begin{align*} y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y&=4 x \\ y \left (0\right ) &= 3 \\ \end{align*}

2.721

19385

11517

\begin{align*} 2 y^{\prime } y-x y^{2}-x^{3}&=0 \\ \end{align*}

2.721

19386

18517

\begin{align*} 4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\ \end{align*}

2.721

19387

19849

\begin{align*} e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\ \end{align*}

2.721

19388

697

\begin{align*} y^{\prime }&=4 x^{3} y-y \\ y \left (1\right ) &= -3 \\ \end{align*}

2.722

19389

19344

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=2 x \csc \left (x \right ) \\ \end{align*}

2.722

19390

10068

\begin{align*} y^{\prime }&=2 \sqrt {y} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.723

19391

9933

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (8+5 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.724

19392

22418

\begin{align*} y^{\prime }&=\frac {y \left (-{\mathrm e}^{x}+y\right )}{{\mathrm e}^{x}-2 y x} \\ \end{align*}

2.724

19393

17578

\begin{align*} 2 y y^{\prime \prime }+y^{2}&={y^{\prime }}^{2} \\ \end{align*}

2.725

19394

22090

\begin{align*} y^{\prime }-\frac {2 y}{x}&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.725

19395

3041

\begin{align*} x \,{\mathrm e}^{-y^{2}}+y^{\prime } y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.726

19396

9098

\begin{align*} \frac {y^{\prime \prime }}{y^{\prime }}&=x^{2} \\ \end{align*}

2.727

19397

10370

\begin{align*} {y^{\prime \prime }}^{3}&=0 \\ \end{align*}

2.727

19398

13068

\begin{align*} x^{\prime }&=a_{1} x+b_{1} y+c_{1} \\ y^{\prime }&=a_{2} x+b_{2} y+c_{2} \\ \end{align*}

2.727

19399

17084

\begin{align*} \sin \left (t \right )^{2}&=\cos \left (y\right )^{2} y^{\prime } \\ \end{align*}

2.729

19400

24286

\begin{align*} x^{\prime }&=\cos \left (x\right ) \cos \left (t \right )^{2} \\ \end{align*}

2.729