2.3.186 Problems 18501 to 18600

Table 2.903: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

18501

1575

\begin{align*} {\mathrm e}^{y^{2}} \left (2 y^{\prime } y+\frac {2}{x}\right )&=\frac {1}{x^{2}} \\ \end{align*}

2.311

18502

18589

\begin{align*} y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime }&=0 \\ \end{align*}

2.311

18503

20317

\begin{align*} s^{\prime }+x^{2}&=x^{2} {\mathrm e}^{3 s} \\ \end{align*}

2.311

18504

14513

\begin{align*} y^{\prime } \cos \left (y\right )+\frac {\sin \left (y\right )}{x}&=1 \\ \end{align*}

2.312

18505

21973

\begin{align*} y^{\prime }&=x \sin \left (y\right )+{\mathrm e}^{x} \\ \end{align*}

2.312

18506

5314

\begin{align*} \left (2-10 x^{2} y^{3}+3 y^{2}\right ) y^{\prime }&=x \left (1+5 y^{4}\right ) \\ \end{align*}

2.313

18507

11564

\begin{align*} \left (y^{2}-x \right ) y^{\prime }-y+x^{2}&=0 \\ \end{align*}

2.313

18508

22063

\begin{align*} y^{\prime }+y x&=x y^{2} \\ \end{align*}

2.315

18509

1100

\begin{align*} y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\ \end{align*}

2.316

18510

3608

\begin{align*} m v^{\prime }&=m g -k v^{2} \\ v \left (0\right ) &= 0 \\ \end{align*}

2.316

18511

5291

\begin{align*} \left (x -x^{2} y-y^{3}\right ) y^{\prime }&=x^{3}-y+x y^{2} \\ \end{align*}

2.316

18512

17395

\begin{align*} 3 y^{\prime \prime }-y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

2.316

18513

22516

\begin{align*} y^{\prime }&=\left (2 x^{2}-{\mathrm e}^{x} y\right ) {\mathrm e}^{-x} \\ \end{align*}

2.316

18514

22527

\begin{align*} y^{\prime } \left (y^{2}+2 x \right )&=y \\ \end{align*}

2.317

18515

689

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\ \end{align*}

2.318

18516

2975

\begin{align*} y^{2}+1+\left (2 y x -y^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= -1 \\ \end{align*}

2.318

18517

11569

\begin{align*} \left (x^{2}+y^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}

2.318

18518

15368

\begin{align*} s^{\prime }+s \cos \left (t \right )&=\frac {\sin \left (2 t \right )}{2} \\ \end{align*}

2.318

18519

19424

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=6 \\ \end{align*}

2.318

18520

678

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

2.319

18521

1696

\begin{align*} 4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

2.319

18522

5126

\begin{align*} x y^{\prime } y+x^{4}-y^{2}&=0 \\ \end{align*}

2.319

18523

11482

\begin{align*} \left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y&=0 \\ \end{align*}

2.319

18524

15791

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{t} y}{1+y^{2}} \\ \end{align*}

2.319

18525

22075

\begin{align*} y^{\prime }+y x&=6 x \sqrt {y} \\ \end{align*}

2.320

18526

7535

\begin{align*} y^{3}+4 \,{\mathrm e}^{x} y+\left (2 \,{\mathrm e}^{x}+3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.321

18527

23167

\begin{align*} y^{\prime }-2 y x&=4 x \sqrt {y} \\ \end{align*}

2.321

18528

25005

\begin{align*} y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\ y \left (2\right ) &= 4 \\ \end{align*}

2.321

18529

20298

\begin{align*} \left (x -y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

2.323

18530

14483

\begin{align*} y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\ \end{align*}

2.325

18531

5270

\begin{align*} x \left (x^{3}-3 x^{3} y+4 y^{2}\right ) y^{\prime }&=6 y^{3} \\ \end{align*}

2.326

18532

10327

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \\ \end{align*}

2.326

18533

21729

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 4 \\ y \left (\pi \right ) &= 4 \\ \end{align*}

2.327

18534

720

\begin{align*} \left (x +1\right ) y^{\prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

2.328

18535

1153

\begin{align*} y^{\prime }&=\frac {2 \cos \left (2 x \right )}{3+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

2.328

18536

13898

\begin{align*} \left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y&=0 \\ \end{align*}

2.328

18537

4700

\begin{align*} y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y&=0 \\ \end{align*}

2.329

18538

4715

\begin{align*} y^{\prime }&=\sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \\ \end{align*}

2.329

18539

15722

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=\left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.329

18540

16230

\begin{align*} y^{\prime } y&=x y^{2}-9 x \\ \end{align*}

2.329

18541

25465

\begin{align*} y^{\prime }&=\sin \left (t \right ) y+Q \sin \left (t \right ) \\ \end{align*}

2.329

18542

790

\begin{align*} y^{\prime } x +3 y&=\frac {3}{x^{{3}/{2}}} \\ \end{align*}

2.331

18543

1733

\begin{align*} 3 y x +2 y^{2}+y+\left (x^{2}+2 y x +x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.331

18544

8199

\begin{align*} y^{\prime }&=\sqrt {1-y^{2}} \\ \end{align*}

2.331

18545

9971

\begin{align*} y^{\prime }&=\frac {y}{x \ln \left (x \right )} \\ \end{align*}

2.331

18546

13319

\begin{align*} x^{4} \left (y^{\prime }-y^{2}\right )&=a +b \,{\mathrm e}^{\frac {k}{x}}+c \,{\mathrm e}^{\frac {2 k}{x}} \\ \end{align*}

2.331

18547

690

\begin{align*} y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \\ \end{align*}

2.332

18548

14530

\begin{align*} \left (x^{3}+1\right ) y^{\prime }+6 x^{2} y&=6 x^{2} \\ \end{align*}

2.332

18549

15599

\begin{align*} y^{\prime }&=\frac {y}{x}+\sin \left (x^{2}\right ) \\ y \left (-1\right ) &= -1 \\ \end{align*}

2.332

18550

15796

\begin{align*} y^{\prime }&=t y \\ y \left (0\right ) &= 3 \\ \end{align*}

2.332

18551

15800

\begin{align*} y^{\prime }&=\frac {t}{y-t^{2} y} \\ y \left (0\right ) &= 4 \\ \end{align*}

2.332

18552

2870

\begin{align*} x +y&=y^{\prime } x \\ \end{align*}

2.333

18553

9060

\begin{align*} \left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime }&=y \\ \end{align*}

2.333

18554

22441

\begin{align*} y^{\prime }&=\frac {x +y}{x} \\ y \left (3\right ) &= 0 \\ \end{align*}

2.333

18555

15512

\begin{align*} x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y&=0 \\ \end{align*}

2.334

18556

7383

\begin{align*} y^{\prime }&=\frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \\ \end{align*}

2.335

18557

14765

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +8 \left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.335

18558

14967

\begin{align*} x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z&=0 \\ z \left (1\right ) &= 0 \\ z^{\prime }\left (1\right ) &= 5 \\ \end{align*}

2.335

18559

19082

\begin{align*} \left (x -2 y x -y^{2}\right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

2.335

18560

21050

\begin{align*} x^{\prime }&=x^{2}-1 \\ x \left (0\right ) &= 0 \\ \end{align*}

2.335

18561

24188

\begin{align*} v \left (2 u v^{2}-3\right )+\left (3 u^{2} v^{2}-3 u +4 v\right ) v^{\prime }&=0 \\ \end{align*}

2.335

18562

1532

\begin{align*} y^{\prime }&=x \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.336

18563

11515

\begin{align*} \left (y-x^{2}\right ) y^{\prime }-x&=0 \\ \end{align*}

2.336

18564

15387

\begin{align*} y^{\prime } y+x&=\frac {y}{y^{2}+x^{2}}-\frac {x y^{\prime }}{y^{2}+x^{2}} \\ \end{align*}

2.336

18565

15866

\begin{align*} y^{\prime }&=y^{2}-4 y-12 \\ y \left (0\right ) &= 6 \\ \end{align*}

2.336

18566

16894

\begin{align*} \left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1}&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.336

18567

9198

\begin{align*} x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}

2.337

18568

43

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

2.338

18569

4915

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=-1-y^{2} \\ \end{align*}

2.338

18570

5190

\begin{align*} 2 x^{2} y y^{\prime }&=x^{2} \left (2 x +1\right )-y^{2} \\ \end{align*}

2.338

18571

17858

\begin{align*} y^{\prime }&=\cos \left (x -y\right ) \\ \end{align*}

2.338

18572

12496

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-v \left (v +1\right ) y&=0 \\ \end{align*}

2.339

18573

20861

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

2.339

18574

45

\begin{align*} 2 \sqrt {x}\, y^{\prime }&=\sqrt {1-y^{2}} \\ \end{align*}

2.340

18575

21045

\begin{align*} x^{\prime }&={\mathrm e}^{x}-t \\ \end{align*}

2.340

18576

25441

\begin{align*} y^{\prime }-a y&=A \cos \left (\omega t \right )+B \sin \left (\omega t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.340

18577

2326

\begin{align*} \cos \left (y\right ) y^{\prime }&=-\frac {t \sin \left (y\right )}{t^{2}+1} \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

2.342

18578

3568

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

2.342

18579

7440

\begin{align*} y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}}&=x \\ y \left (0\right ) &= 2 \\ \end{align*}

2.342

18580

8471

\begin{align*} y^{\prime } x -4 y&=x^{6} {\mathrm e}^{x} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

2.342

18581

11838

\begin{align*} {y^{\prime }}^{n}-f \left (x \right ) g \left (y\right )&=0 \\ \end{align*}

2.342

18582

18585

\begin{align*} \left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

2.342

18583

19271

\begin{align*} y^{\prime }&=2 y x +1 \\ \end{align*}

2.342

18584

699

\begin{align*} \tan \left (x \right ) y^{\prime }&=y \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ \end{align*}

2.343

18585

4775

\begin{align*} y^{\prime } x&=a +b y^{2} \\ \end{align*}

2.344

18586

54

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\ \end{align*}

2.345

18587

9538

\begin{align*} y^{\prime \prime } x +\left (x +3\right ) y^{\prime }+7 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.345

18588

17933

\begin{align*} y^{\prime }+2 y x&={\mathrm e}^{-x^{2}} \\ \end{align*}

2.345

18589

1176

\begin{align*} y^{3}+y^{\prime }&=0 \\ \end{align*}

2.346

18590

1230

\begin{align*} y^{\prime }&=1+2 x +y^{2}+2 x y^{2} \\ \end{align*}

2.346

18591

2497

\begin{align*} \cos \left (y\right ) y^{\prime }&=-\frac {t \sin \left (y\right )}{t^{2}+1} \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

2.346

18592

4343

\begin{align*} y \left (x +y\right )+\left (x +2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

2.346

18593

5009

\begin{align*} x^{k} y^{\prime }&=a \,x^{m}+b y^{n} \\ \end{align*}

2.346

18594

5560

\begin{align*} \left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}&=0 \\ \end{align*}

2.347

18595

5700

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a&=0 \\ \end{align*}

2.347

18596

3033

\begin{align*} \sec \left (y\right )^{2} y^{\prime }&=\tan \left (y\right )+2 x \,{\mathrm e}^{x} \\ \end{align*}

2.348

18597

5280

\begin{align*} x^{2} \left (a +y\right )^{2} y^{\prime }&=\left (x^{2}+1\right ) \left (y^{2}+a^{2}\right ) \\ \end{align*}

2.348

18598

7223

\begin{align*} y^{\prime } y+x y^{2}-8 x&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

2.348

18599

15292

\begin{align*} x^{\prime }&=2 x+y-z+5 \sin \left (t \right ) \\ y^{\prime }&=y+z-10 \cos \left (t \right ) \\ z^{\prime }&=x+z+2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

2.348

18600

1169

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\ y \left (-3\right ) &= 1 \\ \end{align*}

2.349