| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 18601 |
\begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.349 |
|
| 18602 |
\begin{align*}
-\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.349 |
|
| 18603 |
\begin{align*}
y^{\prime }&=\frac {2 x -\sin \left (y\right )}{x \cos \left (y\right )} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.349 |
|
| 18604 |
\begin{align*}
7 y-3+\left (2 x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| 18605 |
\begin{align*}
3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| 18606 |
\begin{align*}
6 y x +2 y^{2}-5+\left (3 x^{2}+4 y x -6\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.350 |
|
| 18607 |
\begin{align*}
y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| 18608 |
\begin{align*}
y^{\prime }+\frac {y}{\sin \left (x \right )}-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| 18609 |
\begin{align*}
y^{\prime }&=x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.352 |
|
| 18610 |
\begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.352 |
|
| 18611 |
\begin{align*}
y^{\prime }&=\frac {x \left (1-x \right )}{y \left (y-2\right )} \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.353 |
|
| 18612 |
\begin{align*}
p^{\prime }+2 t p&=p+4 t -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.353 |
|
| 18613 |
\begin{align*}
\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.353 |
|
| 18614 |
\begin{align*}
\cos \left (x \right ) y^{\prime }&=y \sin \left (x \right )+\cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.353 |
|
| 18615 |
\begin{align*}
\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }&={\mathrm e}^{x} y^{\prime } \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.354 |
|
| 18616 |
\begin{align*}
m y^{\prime \prime }+k y&=F \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.354 |
|
| 18617 |
\begin{align*}
y^{\prime }+3 y&=2 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.355 |
|
| 18618 | \begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3}+1 \\
x_{2}^{\prime }&=x_{3}+x_{4}+t \\
x_{3}^{\prime }&=x_{1}+x_{4}+t^{2} \\
x_{4}^{\prime }&=x_{1}+x_{2}+t^{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.355 |
|
| 18619 |
\begin{align*}
2 y x +3 x^{2} y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.355 |
|
| 18620 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.355 |
|
| 18621 |
\begin{align*}
b x y+a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.355 |
|
| 18622 |
\begin{align*}
\left (1+\cos \left (\theta \right )\right ) r^{\prime }&=-r \sin \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.355 |
|
| 18623 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.357 |
|
| 18624 |
\begin{align*}
y^{2}+\frac {2}{x}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| 18625 |
\begin{align*}
y^{\prime }+y&=2 x \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| 18626 |
\begin{align*}
\left (x +x^{3} \sin \left (2 y\right )\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| 18627 |
\begin{align*}
\sqrt {t^{2}+1}\, y+y^{\prime }&=0 \\
y \left (0\right ) &= \sqrt {5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.361 |
|
| 18628 |
\begin{align*}
y^{\prime }&=t^{r} y+4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.362 |
|
| 18629 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= -3 \\
y^{\prime \prime \prime }\left (0\right ) &= -5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.362 |
|
| 18630 |
\begin{align*}
z^{\prime }&=10^{x +z} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.363 |
|
| 18631 |
\begin{align*}
x^{3}+x y^{2}+y+\left (x^{2} y+y^{3}+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.364 |
|
| 18632 |
\begin{align*}
y^{2}-\left (y x +x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.365 |
|
| 18633 |
\begin{align*}
x \,{\mathrm e}^{y}+y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.365 |
|
| 18634 |
\begin{align*}
a^{2} y^{\prime \prime }&=2 x \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
2.365 |
|
| 18635 |
\begin{align*}
y^{\prime }&=1-\frac {y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.365 |
|
| 18636 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.366 |
|
| 18637 | \begin{align*}
y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 2.367 |
|
| 18638 |
\begin{align*}
1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.367 |
|
| 18639 |
\begin{align*}
\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.368 |
|
| 18640 |
\begin{align*}
y^{\prime } x&=a \,x^{2 n}+\left (n +b y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.368 |
|
| 18641 |
\begin{align*}
y^{\prime }+4 y-{\mathrm e}^{-x}&=0 \\
y \left (0\right ) &= {\frac {4}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.368 |
|
| 18642 |
\begin{align*}
2 x^{2} y+x^{3} y^{\prime }&=10 \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.368 |
|
| 18643 |
\begin{align*}
{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.368 |
|
| 18644 |
\begin{align*}
\left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.368 |
|
| 18645 |
\begin{align*}
T^{\prime }&=-k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.368 |
|
| 18646 |
\begin{align*}
\left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.369 |
|
| 18647 |
\begin{align*}
3 y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.369 |
|
| 18648 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.370 |
|
| 18649 |
\begin{align*}
y^{\prime }&=y f \left (t \right ) \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.370 |
|
| 18650 |
\begin{align*}
y^{\prime }&=1+x +y+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.371 |
|
| 18651 |
\begin{align*}
\left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.371 |
|
| 18652 |
\begin{align*}
y^{\prime }&=y \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.371 |
|
| 18653 |
\begin{align*}
x^{2} y^{\prime }&=y x +3 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.372 |
|
| 18654 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.372 |
|
| 18655 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\
y \left (\pi \right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 2 \,{\mathrm e}^{-\pi }-2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
2.372 |
|
| 18656 | \begin{align*}
\sqrt {t^{2}+1}\, y+y^{\prime }&=0 \\
y \left (0\right ) &= \sqrt {5} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.373 |
|
| 18657 |
\begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime }-y+c&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| 18658 |
\begin{align*}
y^{\prime }-\frac {a y}{x}&=\frac {x +1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| 18659 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| 18660 |
\begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| 18661 |
\begin{align*}
y^{\prime } x +3 y&=20 x^{2} \\
y \left (1\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.374 |
|
| 18662 |
\begin{align*}
2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.374 |
|
| 18663 |
\begin{align*}
y^{\prime }&=1+x^{2}+y^{2}+y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18664 |
\begin{align*}
y^{\prime }&=2 x \left (x +y\right )^{2}-1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18665 |
\begin{align*}
y+2 y^{3} y^{\prime }&=\left (x +4 y \ln \left (y\right )\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18666 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (l \,x^{2}-v^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18667 |
\begin{align*}
y^{\prime }+y&=2 \sin \left (x \right )+5 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18668 |
\begin{align*}
\frac {\sqrt {\ln \left (x \right )}}{x}&=\frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18669 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18670 |
\begin{align*}
y^{\prime }&=\left (y+4\right ) \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| 18671 |
\begin{align*}
x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.376 |
|
| 18672 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.376 |
|
| 18673 |
\begin{align*}
y^{\prime }&=t^{2}+t^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.376 |
|
| 18674 |
\begin{align*}
x y^{\prime } y&=x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.377 |
|
| 18675 | \begin{align*}
y^{\prime }&=2 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.378 |
|
| 18676 |
\begin{align*}
y^{\prime }&=a \,x^{n} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| 18677 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{3}+\frac {2}{3 x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| 18678 |
\begin{align*}
y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.379 |
|
| 18679 |
\begin{align*}
y^{\prime } y&=a x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.379 |
|
| 18680 |
\begin{align*}
\left (1-x^{3}+6 y^{2} x^{2}\right ) y^{\prime }&=\left (6+3 y x -4 y^{3}\right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.379 |
|
| 18681 |
\begin{align*}
x y \left (1+y^{2}\right )+\left (y^{2} x^{2}-2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.379 |
|
| 18682 |
\begin{align*}
y^{\prime }-5 y&=\sin \left (x \right ) \left (x -1\right )+\left (x +1\right ) \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.381 |
|
| 18683 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.381 |
|
| 18684 |
\begin{align*}
x \cos \left (y\right ) y^{\prime }-\left (x^{2}+1\right ) \sin \left (y\right )&=0 \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.381 |
|
| 18685 |
\begin{align*}
y^{4} x^{3}+x +\left (y^{3} x^{4}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.382 |
|
| 18686 |
\begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.382 |
|
| 18687 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {1}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.382 |
|
| 18688 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| 18689 |
\begin{align*}
\sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| 18690 |
\begin{align*}
y^{\left (6\right )}+y&=x^{7}+2 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| 18691 |
\begin{align*}
2 y x +x^{2}+x^{4}-\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| 18692 |
\begin{align*}
y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.385 |
|
| 18693 |
\begin{align*}
y-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.385 |
|
| 18694 | \begin{align*}
x^{2} y^{\prime }&=y x +3 y^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.386 |
|
| 18695 |
\begin{align*}
4 y x +3 y^{2}-x +x \left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.387 |
|
| 18696 |
\begin{align*}
2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.387 |
|
| 18697 |
\begin{align*}
x^{3} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.387 |
|
| 18698 |
\begin{align*}
y^{\prime }&=t y^{2}-y^{2}+t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.387 |
|
| 18699 |
\begin{align*}
{\mathrm e}^{x} \left (y-3 \left ({\mathrm e}^{x}+1\right )^{2}\right )+\left ({\mathrm e}^{x}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.388 |
|
| 18700 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.389 |
|