2.3.187 Problems 18601 to 18700

Table 2.905: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

18601

14032

\begin{align*} y+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

2.349

18602

17183

\begin{align*} -\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\ \end{align*}

2.349

18603

22422

\begin{align*} y^{\prime }&=\frac {2 x -\sin \left (y\right )}{x \cos \left (y\right )} \\ y \left (2\right ) &= 0 \\ \end{align*}

2.349

18604

6915

\begin{align*} 7 y-3+\left (2 x +1\right ) y^{\prime }&=0 \\ \end{align*}

2.350

18605

11115

\begin{align*} 3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y&=0 \\ \end{align*}

2.350

18606

14443

\begin{align*} 6 y x +2 y^{2}-5+\left (3 x^{2}+4 y x -6\right ) y^{\prime }&=0 \\ \end{align*}

2.350

18607

18075

\begin{align*} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.350

18608

23159

\begin{align*} y^{\prime }+\frac {y}{\sin \left (x \right )}-y^{2}&=0 \\ \end{align*}

2.350

18609

16312

\begin{align*} y^{\prime }&=x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \\ \end{align*}

2.352

18610

17889

\begin{align*} y^{\prime }&=\sin \left (x -y\right ) \\ \end{align*}

2.352

18611

8419

\begin{align*} y^{\prime }&=\frac {x \left (1-x \right )}{y \left (y-2\right )} \\ y \left (0\right ) &= -2 \\ \end{align*}

2.353

18612

8441

\begin{align*} p^{\prime }+2 t p&=p+4 t -2 \\ \end{align*}

2.353

18613

17951

\begin{align*} \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=1 \\ \end{align*}

2.353

18614

19079

\begin{align*} \cos \left (x \right ) y^{\prime }&=y \sin \left (x \right )+\cos \left (x \right )^{2} \\ \end{align*}

2.353

18615

3283

\begin{align*} \left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }&={\mathrm e}^{x} y^{\prime } \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

2.354

18616

25470

\begin{align*} m y^{\prime \prime }+k y&=F \\ \end{align*}

2.354

18617

75

\begin{align*} y^{\prime }+3 y&=2 x \,{\mathrm e}^{-3 x} \\ \end{align*}

2.355

18618

927

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3}+1 \\ x_{2}^{\prime }&=x_{3}+x_{4}+t \\ x_{3}^{\prime }&=x_{1}+x_{4}+t^{2} \\ x_{4}^{\prime }&=x_{1}+x_{2}+t^{3} \\ \end{align*}

2.355

18619

1210

\begin{align*} 2 y x +3 x^{2} y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.355

18620

7117

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

2.355

18621

12371

\begin{align*} b x y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

2.355

18622

23057

\begin{align*} \left (1+\cos \left (\theta \right )\right ) r^{\prime }&=-r \sin \left (\theta \right ) \\ \end{align*}

2.355

18623

13776

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

2.357

18624

10020

\begin{align*} y^{2}+\frac {2}{x}+2 x y^{\prime } y&=0 \\ \end{align*}

2.360

18625

14429

\begin{align*} y^{\prime }+y&=2 x \,{\mathrm e}^{-x} \\ y \left (0\right ) &= 2 \\ \end{align*}

2.360

18626

22434

\begin{align*} \left (x +x^{3} \sin \left (2 y\right )\right ) y^{\prime }-2 y&=0 \\ \end{align*}

2.360

18627

2478

\begin{align*} \sqrt {t^{2}+1}\, y+y^{\prime }&=0 \\ y \left (0\right ) &= \sqrt {5} \\ \end{align*}

2.361

18628

15934

\begin{align*} y^{\prime }&=t^{r} y+4 \\ \end{align*}

2.362

18629

21918

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= -3 \\ y^{\prime \prime \prime }\left (0\right ) &= -5 \\ \end{align*}
Using Laplace transform method.

2.362

18630

8680

\begin{align*} z^{\prime }&=10^{x +z} \\ \end{align*}

2.363

18631

24215

\begin{align*} x^{3}+x y^{2}+y+\left (x^{2} y+y^{3}+x \right ) y^{\prime }&=0 \\ \end{align*}

2.364

18632

4348

\begin{align*} y^{2}-\left (y x +x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.365

18633

15588

\begin{align*} x \,{\mathrm e}^{y}+y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.365

18634

19157

\begin{align*} a^{2} y^{\prime \prime }&=2 x \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

2.365

18635

23838

\begin{align*} y^{\prime }&=1-\frac {y^{2}}{x} \\ \end{align*}

2.365

18636

14764

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.366

18637

5952

\begin{align*} y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

2.367

18638

16321

\begin{align*} 1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\ \end{align*}

2.367

18639

1690

\begin{align*} \frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.368

18640

4777

\begin{align*} y^{\prime } x&=a \,x^{2 n}+\left (n +b y\right ) y \\ \end{align*}

2.368

18641

7435

\begin{align*} y^{\prime }+4 y-{\mathrm e}^{-x}&=0 \\ y \left (0\right ) &= {\frac {4}{3}} \\ \end{align*}

2.368

18642

8466

\begin{align*} 2 x^{2} y+x^{3} y^{\prime }&=10 \sin \left (x \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

2.368

18643

11813

\begin{align*} {y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5}&=0 \\ \end{align*}

2.368

18644

13924

\begin{align*} \left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y&=0 \\ \end{align*}

2.368

18645

14906

\begin{align*} T^{\prime }&=-k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \\ \end{align*}

2.368

18646

13004

\begin{align*} \left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right )&=0 \\ \end{align*}

2.369

18647

18110

\begin{align*} 3 y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

2.369

18648

14763

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.370

18649

17137

\begin{align*} y^{\prime }&=y f \left (t \right ) \\ y \left (1\right ) &= 1 \\ \end{align*}

2.370

18650

57

\begin{align*} y^{\prime }&=1+x +y+y x \\ \end{align*}

2.371

18651

1209

\begin{align*} \left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

2.371

18652

8659

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

2.371

18653

189

\begin{align*} x^{2} y^{\prime }&=y x +3 y^{2} \\ \end{align*}

2.372

18654

2317

\begin{align*} \left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

2.372

18655

8645

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\ y \left (\pi \right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 2 \,{\mathrm e}^{-\pi }-2 \\ \end{align*}
Using Laplace transform method.

2.372

18656

2305

\begin{align*} \sqrt {t^{2}+1}\, y+y^{\prime }&=0 \\ y \left (0\right ) &= \sqrt {5} \\ \end{align*}

2.373

18657

3524

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }-y+c&=0 \\ \end{align*}

2.373

18658

15365

\begin{align*} y^{\prime }-\frac {a y}{x}&=\frac {x +1}{x} \\ \end{align*}

2.373

18659

19232

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

2.373

18660

23124

\begin{align*} y^{\prime }&=y^{{2}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.373

18661

16279

\begin{align*} y^{\prime } x +3 y&=20 x^{2} \\ y \left (1\right ) &= 10 \\ \end{align*}

2.374

18662

23849

\begin{align*} 2 y^{\prime } x +y&=0 \\ \end{align*}

2.374

18663

188

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+y^{2} x^{2} \\ \end{align*}

2.375

18664

3675

\begin{align*} y^{\prime }&=2 x \left (x +y\right )^{2}-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.375

18665

4427

\begin{align*} y+2 y^{3} y^{\prime }&=\left (x +4 y \ln \left (y\right )\right ) y^{\prime } \\ \end{align*}

2.375

18666

12430

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (l \,x^{2}-v^{2}\right ) y&=0 \\ \end{align*}

2.375

18667

14512

\begin{align*} y^{\prime }+y&=2 \sin \left (x \right )+5 \sin \left (2 x \right ) \\ \end{align*}

2.375

18668

17095

\begin{align*} \frac {\sqrt {\ln \left (x \right )}}{x}&=\frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \\ \end{align*}

2.375

18669

25488

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.375

18670

25500

\begin{align*} y^{\prime }&=\left (y+4\right ) \cos \left (t \right ) \\ \end{align*}

2.375

18671

7155

\begin{align*} x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

2.376

18672

9967

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.376

18673

15829

\begin{align*} y^{\prime }&=t^{2}+t^{2} y \\ \end{align*}

2.376

18674

5124

\begin{align*} x y^{\prime } y&=x +y^{2} \\ \end{align*}

2.377

18675

669

\begin{align*} y^{\prime }&=2 y^{2} x^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

2.378

18676

4618

\begin{align*} y^{\prime }&=a \,x^{n} y \\ \end{align*}

2.378

18677

19087

\begin{align*} y^{\prime }&=\frac {y^{2}}{3}+\frac {2}{3 x^{2}} \\ \end{align*}

2.378

18678

1213

\begin{align*} y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime }&=0 \\ \end{align*}

2.379

18679

5042

\begin{align*} y^{\prime } y&=a x +b y^{2} \\ \end{align*}

2.379

18680

5283

\begin{align*} \left (1-x^{3}+6 y^{2} x^{2}\right ) y^{\prime }&=\left (6+3 y x -4 y^{3}\right ) x \\ \end{align*}

2.379

18681

24219

\begin{align*} x y \left (1+y^{2}\right )+\left (y^{2} x^{2}-2\right ) y^{\prime }&=0 \\ \end{align*}

2.379

18682

7791

\begin{align*} y^{\prime }-5 y&=\sin \left (x \right ) \left (x -1\right )+\left (x +1\right ) \cos \left (x \right ) \\ \end{align*}

2.381

18683

20799

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

2.381

18684

22955

\begin{align*} x \cos \left (y\right ) y^{\prime }-\left (x^{2}+1\right ) \sin \left (y\right )&=0 \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

2.381

18685

1703

\begin{align*} y^{4} x^{3}+x +\left (y^{3} x^{4}+y\right ) y^{\prime }&=0 \\ \end{align*}

2.382

18686

5483

\begin{align*} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

2.382

18687

10313

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{y x} \\ \end{align*}

2.382

18688

160

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\ \end{align*}

2.383

18689

1699

\begin{align*} \sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.383

18690

24074

\begin{align*} y^{\left (6\right )}+y&=x^{7}+2 x^{3} \\ \end{align*}

2.383

18691

24242

\begin{align*} 2 y x +x^{2}+x^{4}-\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

2.383

18692

11381

\begin{align*} y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1&=0 \\ \end{align*}

2.385

18693

15589

\begin{align*} y-x^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

2.385

18694

781

\begin{align*} x^{2} y^{\prime }&=y x +3 y^{2} \\ \end{align*}

2.386

18695

4335

\begin{align*} 4 y x +3 y^{2}-x +x \left (x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.387

18696

17213

\begin{align*} 2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.387

18697

22055

\begin{align*} x^{3} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime }&=0 \\ \end{align*}

2.387

18698

24953

\begin{align*} y^{\prime }&=t y^{2}-y^{2}+t -1 \\ \end{align*}

2.387

18699

14501

\begin{align*} {\mathrm e}^{x} \left (y-3 \left ({\mathrm e}^{x}+1\right )^{2}\right )+\left ({\mathrm e}^{x}+1\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ \end{align*}

2.388

18700

3525

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.389