2.3.185 Problems 18401 to 18500

Table 2.901: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

18401

12361

\begin{align*} y^{\prime \prime } x +y^{\prime }+l x y&=0 \\ \end{align*}

2.270

18402

22964

\begin{align*} y^{\prime }&=\frac {\sin \left (x \right ) \sin \left (y\right )}{\cos \left (x \right ) \cos \left (y\right )} \\ \end{align*}

2.270

18403

24262

\begin{align*} y^{\prime }&=x^{3}-2 y x \\ y \left (1\right ) &= 1 \\ \end{align*}

2.271

18404

12418

\begin{align*} x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y&=0 \\ \end{align*}

2.272

18405

181

\begin{align*} y x +y^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

2.273

18406

4999

\begin{align*} x \left (-2 x^{3}+1\right ) y^{\prime }&=2 \left (-x^{3}+1\right ) y \\ \end{align*}

2.273

18407

19093

\begin{align*} y^{\prime }&=\frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \\ \end{align*}

2.273

18408

4887

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}-a y^{3} \\ \end{align*}

2.274

18409

17714

\begin{align*} y^{\prime \prime } x +2 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.274

18410

773

\begin{align*} y x +y^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

2.275

18411

1138

\begin{align*} y^{\prime }&=\frac {1-2 x}{y} \\ y \left (1\right ) &= -2 \\ \end{align*}

2.275

18412

5374

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )&=0 \\ \end{align*}

2.275

18413

14825

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

2.275

18414

15349

\begin{align*} y^{\prime } x +x +y&=0 \\ \end{align*}

2.275

18415

19100

\begin{align*} \frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

2.275

18416

4116

\begin{align*} \left (x +y^{2}\right ) y^{\prime }+y-x^{2}&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

2.277

18417

7676

\begin{align*} x^{2} y^{\prime }+2 y x -x +1&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

2.277

18418

21226

\begin{align*} x^{\prime }&=x+2 y+{\mathrm e}^{t} \\ y^{\prime }&=x-2 y-{\mathrm e}^{t} \\ \end{align*}

2.277

18419

15491

\begin{align*} x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}

2.278

18420

15518

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y \left (2\right ) &= -4 \\ \end{align*}

2.278

18421

6928

\begin{align*} x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.280

18422

8411

\begin{align*} x^{\prime }&=k \left (A -x\right )^{2} \\ x \left (0\right ) &= 0 \\ \end{align*}

2.280

18423

25646

\begin{align*} y^{\prime }&=y^{2}-t \\ \end{align*}

2.280

18424

18512

\begin{align*} y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\ \end{align*}

2.281

18425

23157

\begin{align*} y^{\prime }-\frac {3 y}{x -1}&=\left (x -1\right )^{4} \\ \end{align*}

2.281

18426

7531

\begin{align*} y^{\prime }+\frac {2 y}{x}&=2 y^{2} x^{2} \\ \end{align*}

2.283

18427

25825

\begin{align*} \csc \left (y\right )+\sec \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

2.283

18428

1000

\begin{align*} x_{1}^{\prime }&=23 x_{1}-18 x_{2}-16 x_{3} \\ x_{2}^{\prime }&=-8 x_{1}+6 x_{2}+7 x_{3}+9 x_{4} \\ x_{3}^{\prime }&=34 x_{1}-27 x_{2}-26 x_{3}-9 x_{4} \\ x_{4}^{\prime }&=-26 x_{1}+21 x_{2}+25 x_{3}+12 x_{4} \\ \end{align*}

2.284

18429

1587

\begin{align*} y^{\prime }&=\frac {x^{2}+3 x +2}{y-2} \\ y \left (1\right ) &= 4 \\ \end{align*}

2.284

18430

11460

\begin{align*} \left (x^{2}-5 x +6\right ) y^{\prime }+3 y x -8 y+x^{2}&=0 \\ \end{align*}

2.284

18431

15912

\begin{align*} y+y^{\prime }&=t^{3}+\sin \left (3 t \right ) \\ \end{align*}

2.284

18432

722

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

2.286

18433

5455

\begin{align*} x {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

2.286

18434

17527

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=\ln \left (t \right ) \\ \end{align*}

2.287

18435

19884

\begin{align*} y^{\prime }-3 y-2 z&=0 \\ z^{\prime }+y-2 z&=0 \\ \end{align*}

2.287

18436

25236

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

2.287

18437

3635

\begin{align*} y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\ \end{align*}

2.288

18438

23963

\begin{align*} {\mathrm e}^{2 x +3 y}+{\mathrm e}^{4 x -5 y} y^{\prime }&=0 \\ \end{align*}

2.288

18439

1242

\begin{align*} \frac {2 x}{y}-\frac {y}{y^{2}+x^{2}}+\left (-\frac {x^{2}}{y^{2}}+\frac {x}{y^{2}+x^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

2.289

18440

11313

\begin{align*} y^{\prime }+f \left (x \right ) y-g \left (x \right )&=0 \\ \end{align*}

2.289

18441

11775

\begin{align*} y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2}&=0 \\ \end{align*}

2.289

18442

15780

\begin{align*} x^{\prime }&=1+x^{2} \\ \end{align*}

2.289

18443

2486

\begin{align*} 4 t y+\left (t^{2}+1\right ) y^{\prime }&=t \\ y \left (1\right ) &= {\frac {1}{4}} \\ \end{align*}

2.290

18444

9651

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&={\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.290

18445

19016

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-4 x_{2}+5 x_{3}+9 x_{4} \\ x_{2}^{\prime }&=-2 x_{1}-5 x_{2}+4 x_{3}+12 x_{4} \\ x_{3}^{\prime }&=-2 x_{1}-x_{3}+2 x_{4} \\ x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+3 x_{4} \\ \end{align*}

2.290

18446

21093

\begin{align*} x^{\prime }-t x&=x^{2} \\ \end{align*}

2.290

18447

2983

\begin{align*} \cosh \left (y\right ) y^{\prime }+\sinh \left (y\right )-{\mathrm e}^{-x}&=0 \\ \end{align*}

2.291

18448

9086

\begin{align*} y \ln \left (y\right )-y^{\prime } x&=0 \\ \end{align*}

2.291

18449

12424

\begin{align*} x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y&=0 \\ \end{align*}

2.291

18450

1151

\begin{align*} y^{\prime }&=2 y^{2}+x y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.292

18451

12474

\begin{align*} x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}

2.292

18452

22449

\begin{align*} y^{\prime } x +3 y&=x^{2} \\ \end{align*}

2.293

18453

3021

\begin{align*} 2 x^{3}-y^{3}-3 x +3 y^{2} y^{\prime } x&=0 \\ \end{align*}

2.294

18454

18736

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1}&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

2.294

18455

1173

\begin{align*} y^{\prime }&=\frac {\cot \left (t \right ) y}{1+y} \\ \end{align*}

2.295

18456

1688

\begin{align*} 3 x^{2}+2 y x +4 y^{2}+\left (x^{2}+8 y x +18 y\right ) y^{\prime }&=0 \\ \end{align*}

2.295

18457

3521

\begin{align*} y^{\prime }&=\frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \\ \end{align*}

2.295

18458

4089

\begin{align*} x^{2} y^{\prime }&=\left (y-1\right ) x +\left (y-1\right )^{2} \\ \end{align*}

2.295

18459

5350

\begin{align*} \left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+{\mathrm e}^{x} y+{\mathrm e}^{y}&=0 \\ \end{align*}

2.296

18460

7801

\begin{align*} y^{\prime }-y&=\sin \left (x \right )+\cos \left (2 x \right ) \\ \end{align*}

2.296

18461

66

\begin{align*} y^{\prime }&=2 x y^{2}+3 y^{2} x^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

2.297

18462

8355

\begin{align*} n^{\prime }+n&=n t \,{\mathrm e}^{t +2} \\ \end{align*}

2.297

18463

15865

\begin{align*} y^{\prime }&=y^{2}-4 y-12 \\ y \left (1\right ) &= 0 \\ \end{align*}

2.297

18464

22417

\begin{align*} x^{2}+\frac {y}{x}+\left (\ln \left (x \right )+2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.298

18465

4203

\begin{align*} \tan \left (x \right ) y^{\prime }&=y-\cos \left (x \right ) \\ \end{align*}

2.299

18466

5200

\begin{align*} x \left (3-2 x^{2} y\right ) y^{\prime }&=4 x -3 y+3 y^{2} x^{2} \\ \end{align*}

2.299

18467

5312

\begin{align*} x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y&=0 \\ \end{align*}

2.300

18468

14770

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.300

18469

23152

\begin{align*} y^{\prime } x +y&=3 x \\ \end{align*}

2.300

18470

2843

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}

2.301

18471

7735

\begin{align*} y+\left (x^{2}-4 x \right ) y^{\prime }&=0 \\ \end{align*}

2.301

18472

11719

\begin{align*} \left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0}&=0 \\ \end{align*}

2.301

18473

14713

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

2.301

18474

18086

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

2.301

18475

8375

\begin{align*} \sin \left (x \right )+y^{\prime } y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.302

18476

15910

\begin{align*} y^{\prime }+2 y&=3 t^{2}+2 t -1 \\ \end{align*}

2.302

18477

15969

\begin{align*} y^{\prime }&=3-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.302

18478

16751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\ \end{align*}

2.302

18479

24196

\begin{align*} \left (6+3 y x -4 y^{3}\right ) x +\left (x^{3}-6 y^{2} x^{2}-1\right ) y^{\prime }&=0 \\ \end{align*}

2.302

18480

13204

\begin{align*} g \left (x \right ) y^{\prime }&=f_{1} \left (x \right ) y+f_{0} \left (x \right ) \\ \end{align*}

2.303

18481

14524

\begin{align*} 8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime }&=0 \\ \end{align*}

2.303

18482

15930

\begin{align*} y^{\prime }&=y+4 \cos \left (t^{2}\right ) \\ \end{align*}

2.303

18483

18623

\begin{align*} 2 x y^{\prime } y+\ln \left (x \right )&=-1-y^{2} \\ \end{align*}

2.303

18484

15854

\begin{align*} y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

2.304

18485

18487

\begin{align*} x +y y^{\prime } {\mathrm e}^{-x}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.305

18486

2972

\begin{align*} \cos \left (\theta \right ) r^{\prime }&=2+2 r \sin \left (\theta \right ) \\ \end{align*}

2.306

18487

8676

\begin{align*} y^{\prime }&=\left (y-1\right ) \left (x +1\right ) \\ \end{align*}

2.306

18488

13915

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{-2+n} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y&=0 \\ \end{align*}

2.306

18489

21096

\begin{align*} {x^{\prime }}^{2}-t x+x&=0 \\ \end{align*}

2.306

18490

24289

\begin{align*} 3-2 y x -\left (x^{2}+\frac {1}{y^{2}}+\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

2.306

18491

4195

\begin{align*} y^{\prime } x +y&=x \\ \end{align*}

2.307

18492

3775

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=8 x \ln \left (x \right )^{2} \\ \end{align*}

2.308

18493

5673

\begin{align*} {y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y&=0 \\ \end{align*}

2.308

18494

19440

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= {\mathrm e}^{-2} \\ \end{align*}

2.308

18495

22432

\begin{align*} 2 x^{3}-y+y^{\prime } x&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

2.308

18496

16436

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=0 \\ \end{align*}

2.309

18497

20308

\begin{align*} y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.309

18498

1111

\begin{align*} y^{\prime }+2 y&=t \,{\mathrm e}^{-2 t} \\ y \left (1\right ) &= 0 \\ \end{align*}

2.310

18499

8428

\begin{align*} -y+y^{\prime } x&=x^{2} \sin \left (x \right ) \\ \end{align*}

2.310

18500

17113

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{t}}{1+y} \\ y \left (0\right ) &= -2 \\ \end{align*}

2.310