| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 17501 |
\begin{align*}
x^{\prime }&=\frac {-t +x}{x-t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.932 |
|
| 17502 |
\begin{align*}
3 r&=r^{\prime }-\theta ^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.933 |
|
| 17503 |
\begin{align*}
\left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.933 |
|
| 17504 |
\begin{align*}
y x^{\prime }+\left (y +1\right ) x&={\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.934 |
|
| 17505 |
\begin{align*}
y^{\prime }+\frac {2 x y}{x^{2}+1}&=4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.934 |
|
| 17506 |
\begin{align*}
x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=a \,x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.934 |
|
| 17507 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.934 |
|
| 17508 |
\begin{align*}
x \left (1-y^{3}\right )-3 y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.934 |
|
| 17509 |
\begin{align*}
z^{\prime }&=z \tan \left (y \right )+\sin \left (y \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.935 |
|
| 17510 |
\begin{align*}
y^{\prime } x&=x^{5}+x^{3} y^{2}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.936 |
|
| 17511 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=2 x \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.936 |
|
| 17512 |
\begin{align*}
y-{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.936 |
|
| 17513 |
\begin{align*}
2 x y^{2}+x^{2} y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.937 |
|
| 17514 |
\begin{align*}
y^{\prime }+\frac {y}{1-x}+2 x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.937 |
|
| 17515 |
\begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.937 |
|
| 17516 |
\begin{align*}
\frac {-4+6 y x +2 y^{2}}{3 x^{2}+4 y x +3 y^{2}}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.938 |
|
| 17517 |
\begin{align*}
\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.938 |
|
| 17518 | \begin{align*}
\left (-a^{2}+b^{2}\right ) y+2 a \cot \left (a x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.938 |
|
| 17519 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=\frac {1}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.938 |
|
| 17520 |
\begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y}+x^{2} {\mathrm e}^{-2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.938 |
|
| 17521 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+3 x^{3} y&=6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.939 |
|
| 17522 |
\begin{align*}
{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.939 |
|
| 17523 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (-x +2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.940 |
|
| 17524 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| 17525 |
\begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
1.941 |
|
| 17526 |
\begin{align*}
y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.941 |
|
| 17527 |
\begin{align*}
y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.941 |
|
| 17528 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| 17529 |
\begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.942 |
|
| 17530 |
\begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.942 |
|
| 17531 |
\begin{align*}
y^{\prime } x +y&=4 x +1 \\
y \left (1\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.942 |
|
| 17532 |
\begin{align*}
y \left (y-2 y^{\prime } x \right )^{3}&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.943 |
|
| 17533 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.943 |
|
| 17534 |
\begin{align*}
y^{\prime \prime }&=-9 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.943 |
|
| 17535 |
\begin{align*}
{\mathrm e}^{t} x+1+\left ({\mathrm e}^{t}-1\right ) x^{\prime }&=0 \\
x \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.944 |
|
| 17536 |
\begin{align*}
-a y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.944 |
|
| 17537 |
\begin{align*}
y^{\prime }&=y+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.944 |
|
| 17538 | \begin{align*}
2 y+{\mathrm e}^{-3 x} y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.944 |
|
| 17539 |
\begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.945 |
|
| 17540 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+y \sin \left (x \right )&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.945 |
|
| 17541 |
\begin{align*}
y^{3}+2 x y^{3}+1+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.946 |
|
| 17542 |
\begin{align*}
y-x +x y \cot \left (x \right )+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.946 |
|
| 17543 |
\begin{align*}
y^{\prime }&=\frac {2 y}{-t^{2}+1}+3 \\
y \left (\frac {1}{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| 17544 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }&=0 \\
y \left (0\right ) &= 13 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| 17545 |
\begin{align*}
y^{\prime }-y \sin \left (x \right )&=\sin \left (x \right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| 17546 |
\begin{align*}
y^{\prime }&=\frac {y}{t +1}+10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| 17547 |
\begin{align*}
x^{4} y^{\prime }+2 x^{3} y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| 17548 |
\begin{align*}
2 y^{\prime \prime } x +6 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| 17549 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| 17550 |
\begin{align*}
2 x^{2}-{\mathrm e}^{x} y-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.949 |
|
| 17551 |
\begin{align*}
y^{\prime } x -\frac {y}{\ln \left (x \right )}&=0 \\
y \left ({\mathrm e}\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.949 |
|
| 17552 |
\begin{align*}
y^{\prime }-\frac {n y}{t}&={\mathrm e}^{t} t^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.949 |
|
| 17553 |
\begin{align*}
\left (x^{3}+x \right ) y^{\prime }+4 x^{2} y&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.950 |
|
| 17554 |
\begin{align*}
y^{\prime }+\frac {y \ln \left (y\right )}{x}&=\frac {y}{x^{2}}-\ln \left (y\right )^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.950 |
|
| 17555 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.950 |
|
| 17556 |
\begin{align*}
y y^{\prime \prime }&=y^{3}+{y^{\prime }}^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.951 |
|
| 17557 |
\begin{align*}
-x^{2} y-\left (-x^{3}+1\right ) y^{\prime }+x \left (x^{3}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.951 |
|
| 17558 | \begin{align*}
2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (1\right ) &= -5 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.951 |
|
| 17559 |
\begin{align*}
y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y&=0 \\
y \left ({\mathrm e}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| 17560 |
\begin{align*}
x^{3} y^{\prime }-x^{6} y^{2}-\left (2 x -3\right ) x^{2} y+3&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| 17561 |
\begin{align*}
r^{\prime }&=c \\
r \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| 17562 |
\begin{align*}
x^{\prime \prime }&=50 \sin \left (5 t \right ) \\
x \left (0\right ) &= 8 \\
x^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 17563 |
\begin{align*}
y^{\prime }&=-\cot \left (x \right ) y+\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 17564 |
\begin{align*}
x^{2} y^{\prime }&=1+y x +y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 17565 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=\cos \left (a x \right )+\cos \left (b x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 17566 |
\begin{align*}
y^{\prime }&=1+x +y+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| 17567 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y&=\arctan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| 17568 |
\begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| 17569 |
\begin{align*}
y^{\prime }&=\frac {7 x^{2}-1}{7+5 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| 17570 |
\begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.955 |
|
| 17571 |
\begin{align*}
y^{\prime }-5 y&={\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.956 |
|
| 17572 |
\begin{align*}
y^{\prime }&=\left (t +1\right ) \left (1+y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 17573 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 17574 |
\begin{align*}
3 y-2 x +\left (3 x -2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 17575 |
\begin{align*}
\frac {x}{1+y}&=\frac {y y^{\prime }}{x +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.957 |
|
| 17576 |
\begin{align*}
y^{\prime }&=\cot \left (x \right ) y+\csc \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 17577 | \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=x^{2}+x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.957 |
|
| 17578 |
\begin{align*}
x^{\prime }&=x^{2}+x \\
x \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 17579 |
\begin{align*}
2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 17580 |
\begin{align*}
2+y^{2}+2 x +2 y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.958 |
|
| 17581 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (\frac {\pi }{4}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.959 |
|
| 17582 |
\begin{align*}
y^{\prime } x +y&=3 y x \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.960 |
|
| 17583 |
\begin{align*}
3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.960 |
|
| 17584 |
\begin{align*}
2 y x -2 y+1+x \left (x -1\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.960 |
|
| 17585 |
\begin{align*}
2 \left (1-y\right ) y y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.960 |
|
| 17586 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=4 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| 17587 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| 17588 |
\begin{align*}
t y^{\prime }+m y&=t \ln \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| 17589 |
\begin{align*}
4 x y^{2}+y^{\prime }&=5 x^{4} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.962 |
|
| 17590 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{5} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.963 |
|
| 17591 |
\begin{align*}
y^{\prime \prime } x +\left (x^{n +m} a b +a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.963 |
|
| 17592 |
\begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.963 |
|
| 17593 |
\begin{align*}
-y+y^{\prime } x&=2 x^{2} y^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.963 |
|
| 17594 |
\begin{align*}
\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.964 |
|
| 17595 |
\begin{align*}
\left (a^{2} x^{2}-y^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+x^{2} \left (a^{2}-1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.964 |
|
| 17596 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }-3 y&=\operatorname {Heaviside}\left (x -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.964 |
|
| 17597 | \begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.964 |
|
| 17598 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} y^{2}+\left (b \,{\mathrm e}^{x \left (\lambda +\mu \right )}-\lambda \right ) y+c \,{\mathrm e}^{\mu x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.964 |
|
| 17599 |
\begin{align*}
y^{\prime }&=\frac {1}{y x -3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.964 |
|
| 17600 |
\begin{align*}
y^{\prime }-y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.964 |
|