| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 17601 |
\begin{align*}
x^{\prime }&=t^{2} x^{4}+1 \\
x \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.964 |
|
| 17602 |
\begin{align*}
y^{\prime }+2 x \left (1+y\right )&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.965 |
|
| 17603 |
\begin{align*}
y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.965 |
|
| 17604 |
\begin{align*}
x^{2} y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.966 |
|
| 17605 |
\begin{align*}
y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.966 |
|
| 17606 |
\begin{align*}
3 x^{5} y^{2}+x^{3} y^{\prime }&=2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.967 |
|
| 17607 |
\begin{align*}
y^{2} y^{\prime }&=2+x \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.967 |
|
| 17608 |
\begin{align*}
4 y+y^{\prime \prime }&=\left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.967 |
|
| 17609 |
\begin{align*}
t^{2}-y+\left (y-t \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.967 |
|
| 17610 |
\begin{align*}
\sqrt {x^{2}+1}\, y^{\prime }&=2 x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.968 |
|
| 17611 |
\begin{align*}
y^{\prime }&=2-\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.968 |
|
| 17612 |
\begin{align*}
y^{\prime }&=f \left (x \right )+a y+b y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.969 |
|
| 17613 |
\begin{align*}
y^{\prime }+4 y x&=x^{3} {\mathrm e}^{x^{2}} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.969 |
|
| 17614 |
\begin{align*}
2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\
y \left (1\right ) &= -1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.969 |
|
| 17615 |
\begin{align*}
y^{2}+x y^{\prime } y&=\left (2 y^{2}+1\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.969 |
|
| 17616 |
\begin{align*}
y^{\prime }-4 y&=\cos \left (3 t \right )+\sin \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.969 |
|
| 17617 |
\begin{align*}
y x +x^{2} y^{\prime }&=10 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.969 |
|
| 17618 | \begin{align*}
x \left (y x +2\right ) y^{\prime }&=3+2 x^{3}-2 y-x y^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.970 |
|
| 17619 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.970 |
|
| 17620 |
\begin{align*}
x^{\prime \prime }&=\left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.970 |
|
| 17621 |
\begin{align*}
\left (2 x -1\right ) y+x \left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.970 |
|
| 17622 |
\begin{align*}
\left ({\mathrm e}^{y}+x \right ) y^{\prime }&=x \,{\mathrm e}^{-y}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.971 |
|
| 17623 |
\begin{align*}
2 x +y \cos \left (y x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.971 |
|
| 17624 |
\begin{align*}
y^{\prime }&=x +\sin \left (x \right )+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.971 |
|
| 17625 |
\begin{align*}
x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.971 |
|
| 17626 |
\begin{align*}
\left (x^{2}-y\right ) y^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.971 |
|
| 17627 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
1.972 |
|
| 17628 |
\begin{align*}
4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x&=0 \\
x \left (1\right ) &= 2 \\
x^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.972 |
|
| 17629 |
\begin{align*}
y^{\prime }-y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.972 |
|
| 17630 |
\begin{align*}
y^{2} \left (y^{\prime } y-x \right )+x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| 17631 |
\begin{align*}
y^{\prime } x +n y&=x^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| 17632 |
\begin{align*}
y^{\prime } x&=x^{2} \sin \left (x \right )+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| 17633 |
\begin{align*}
x^{\prime }+a x&=b t \\
x \left (t_{0} \right ) &= x_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| 17634 |
\begin{align*}
y^{\prime } x +6 y&=1+3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| 17635 |
\begin{align*}
t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| 17636 |
\begin{align*}
x y^{2}+3 y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| 17637 | \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.975 |
|
| 17638 |
\begin{align*}
y^{\prime }-5 y&=3 \,{\mathrm e}^{x}-2 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| 17639 |
\begin{align*}
t y^{\prime }+y&=\ln \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| 17640 |
\begin{align*}
y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.976 |
|
| 17641 |
\begin{align*}
y^{\prime }&=\left (1-y\right ) \left (\frac {1}{t}-\frac {1}{10}+\frac {y}{10}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.976 |
|
| 17642 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.976 |
|
| 17643 |
\begin{align*}
y^{\prime }-a y&=A \cos \left (\omega t \right )+B \sin \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.976 |
|
| 17644 |
\begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.977 |
|
| 17645 |
\begin{align*}
y^{\prime }+3 y x&=6 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| 17646 |
\begin{align*}
t y^{\prime }+4 y&=t^{2}-t +1 \\
y \left (1\right ) &= {\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| 17647 |
\begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| 17648 |
\begin{align*}
y^{\prime }-y&=x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| 17649 |
\begin{align*}
x^{2}+y^{2}+\left (2 y x -3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.977 |
|
| 17650 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+5 y&=\operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.978 |
|
| 17651 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.978 |
|
| 17652 |
\begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.979 |
|
| 17653 |
\begin{align*}
y^{\prime }&=y^{2}+m y \cot \left (x \right )+b^{2} \sin \left (x \right )^{2 m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.979 |
|
| 17654 |
\begin{align*}
y^{\prime } y&=x -1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.980 |
|
| 17655 |
\begin{align*}
x^{2} y^{\prime }-y x&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.980 |
|
| 17656 | \begin{align*}
y^{\prime }&=y-x^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.980 |
|
| 17657 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-2 y x&=-x^{3}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.980 |
|
| 17658 |
\begin{align*}
x^{2} y^{\prime }+2 y x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.980 |
|
| 17659 |
\begin{align*}
2 y^{\prime } x +y&=10 \sqrt {x} \\
y \left (2\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.981 |
|
| 17660 |
\begin{align*}
y^{\prime }&=\tan \left (t \right ) y+\sec \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.981 |
|
| 17661 |
\begin{align*}
x^{\prime }&=3 t^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.981 |
|
| 17662 |
\begin{align*}
y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.981 |
|
| 17663 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.982 |
|
| 17664 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 y^{\prime } x -6 y&=\cos \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.983 |
|
| 17665 |
\begin{align*}
y^{\prime }+a y-c \,{\mathrm e}^{b x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.983 |
|
| 17666 |
\begin{align*}
x \left (a x +1\right ) y^{\prime }+a -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.984 |
|
| 17667 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{-\sin \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.984 |
|
| 17668 |
\begin{align*}
y^{\prime }&=y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.984 |
|
| 17669 |
\begin{align*}
y^{\prime }&=\frac {3 x}{y+x^{2} y} \\
y \left (0\right ) &= -7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.984 |
|
| 17670 |
\begin{align*}
y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.985 |
|
| 17671 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.985 |
|
| 17672 |
\begin{align*}
x^{2} y^{\prime }&=y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.986 |
|
| 17673 |
\begin{align*}
x y^{2}+3 y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.987 |
|
| 17674 |
\begin{align*}
\left (1+\sqrt {x +y}\right ) y^{\prime }+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.987 |
|
| 17675 | \begin{align*}
r^{\prime }&=\left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.987 |
|
| 17676 |
\begin{align*}
y^{\prime } x -y^{2}+\left (2 x +1\right ) y&=x^{2}+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.987 |
|
| 17677 |
\begin{align*}
4 t y+\left (t^{2}+1\right ) y^{\prime }&=t \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.988 |
|
| 17678 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=\operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.988 |
|
| 17679 |
\begin{align*}
y^{\prime } x -y f \left (y x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.988 |
|
| 17680 |
\begin{align*}
y&=\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.988 |
|
| 17681 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.989 |
|
| 17682 |
\begin{align*}
y-2 x -y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.989 |
|
| 17683 |
\begin{align*}
y^{\prime }&=\frac {-1-2 y x -y^{2}}{x^{2}+2 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.990 |
|
| 17684 |
\begin{align*}
2 y+y^{\prime }&=b \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.990 |
|
| 17685 |
\begin{align*}
t y^{\prime }&=2 y-t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.990 |
|
| 17686 |
\begin{align*}
y^{\prime }&=-y x +1 \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.990 |
|
| 17687 |
\begin{align*}
x^{2} y^{\prime \prime }+y \sin \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.991 |
|
| 17688 |
\begin{align*}
y^{\prime } x&=a \,x^{2}+b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.992 |
|
| 17689 |
\begin{align*}
{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.992 |
|
| 17690 |
\begin{align*}
x^{\prime }&=t^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.992 |
|
| 17691 |
\begin{align*}
y^{\prime }&=-3 y+4 \cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.992 |
|
| 17692 |
\begin{align*}
1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.993 |
|
| 17693 |
\begin{align*}
2 x \left (y-x^{2}\right )+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.993 |
|
| 17694 | \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{3} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
x_{3}^{\prime }&=-2 x_{1}-x_{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.994 |
|
| 17695 |
\begin{align*}
3 y^{2} y^{\prime }&=1+x +a y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| 17696 |
\begin{align*}
\left (1+y\right ) y^{\prime }&=y \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| 17697 |
\begin{align*}
y^{\prime \prime } x -y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| 17698 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| 17699 |
\begin{align*}
y^{\prime }&=y x +x \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| 17700 |
\begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.994 |
|