| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14701 |
\begin{align*}
y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.097 |
|
| 14702 |
\begin{align*}
y x -x^{2} y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.097 |
|
| 14703 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (\frac {1}{2} x +x^{2}\right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.097 |
|
| 14704 |
\begin{align*}
y^{\prime \prime }-m^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.098 |
|
| 14705 |
\begin{align*}
x+y^{\prime }&=\sin \left (t \right )+\cos \left (t \right ) \\
x^{\prime }+y&=\cos \left (t \right )-\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.098 |
|
| 14706 |
\begin{align*}
y^{\prime \prime } x -3 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.098 |
|
| 14707 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= {\frac {5}{4}} \\
y^{\prime }\left (0\right ) &= -{\frac {3}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| 14708 |
\begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| 14709 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| 14710 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| 14711 |
\begin{align*}
y^{\prime }&=t +y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| 14712 |
\begin{align*}
y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right )&=0 \\
y \left (2\right ) &= 3 \\
y^{\prime }\left (2\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.099 |
|
| 14713 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3}+7 x_{4} \\
x_{2}^{\prime }&=x_{1}+4 x_{2}+10 x_{3}+x_{4} \\
x_{3}^{\prime }&=x_{1}+10 x_{2}+4 x_{3}+x_{4} \\
x_{4}^{\prime }&=7 x_{1}+x_{2}+x_{3}+4 x_{4} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= 1 \\
x_{3} \left (0\right ) &= 1 \\
x_{4} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.100 |
|
| 14714 |
\begin{align*}
y^{\prime \prime }&=4 \sin \left (x \right )-4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.100 |
|
| 14715 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.101 |
|
| 14716 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y&=\sin \left (x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.101 |
|
| 14717 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.101 |
|
| 14718 | \begin{align*}
x^{\prime \prime }+9 x&=\sin \left (t \right )+\sin \left (3 t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.101 |
|
| 14719 |
\begin{align*}
y_{1}^{\prime }&=-7 y_{1}-4 y_{2}+4 y_{3} \\
y_{2}^{\prime }&=y_{1}+y_{3} \\
y_{3}^{\prime }&=-9 y_{1}-5 y_{2}+6 y_{3} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= -6 \\
y_{2} \left (0\right ) &= 9 \\
y_{3} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.102 |
|
| 14720 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.102 |
|
| 14721 |
\begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.102 |
|
| 14722 |
\begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.103 |
|
| 14723 |
\begin{align*}
x^{\prime \prime }+\omega ^{2} x&=\sin \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.103 |
|
| 14724 |
\begin{align*}
3 y+y^{\prime }&={\mathrm e}^{t} \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.103 |
|
| 14725 |
\begin{align*}
y^{\prime }&=a y^{\frac {a -1}{a}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| 14726 |
\begin{align*}
y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=t^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.104 |
|
| 14727 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| 14728 |
\begin{align*}
4 x {y^{\prime }}^{2}&=\left (3 x -1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| 14729 |
\begin{align*}
x^{\prime \prime }&=\delta \left (-t +a \right ) \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| 14730 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.104 |
|
| 14731 |
\begin{align*}
y^{\prime \prime }-7 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| 14732 |
\begin{align*}
y^{\prime \prime }&=\left (1+y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.104 |
|
| 14733 |
\begin{align*}
y^{\prime }&=x \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| 14734 |
\begin{align*}
-2 a^{2} x y^{\prime }+\left (-a^{2} x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| 14735 |
\begin{align*}
a^{2} y+2 x^{3} y^{\prime }+x^{4} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| 14736 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| 14737 | \begin{align*}
y&=t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.105 |
|
| 14738 |
\begin{align*}
\theta ^{\prime \prime }+4 \theta &=15 \cos \left (3 t \right ) \\
\theta \left (0\right ) &= 0 \\
\theta ^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| 14739 |
\begin{align*}
18 x^{2} y^{\prime \prime }+3 x \left (x +5\right ) y^{\prime }-\left (10 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| 14740 |
\begin{align*}
y^{\prime }&=x -y+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| 14741 |
\begin{align*}
x \left (4-x \right ) y^{\prime \prime }+\left (-x +2\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| 14742 |
\begin{align*}
2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| 14743 |
\begin{align*}
a y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| 14744 |
\begin{align*}
i^{\prime \prime }&=t^{2}+1 \\
i \left (0\right ) &= 2 \\
i^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| 14745 |
\begin{align*}
{y^{\prime }}^{6}&=\left (y-a \right )^{4} \left (y-b \right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.107 |
|
| 14746 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+4 y&=\sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.107 |
|
| 14747 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{2 y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.107 |
|
| 14748 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 14749 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 14750 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 14751 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 14752 |
\begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 14753 |
\begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 14754 |
\begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.108 |
|
| 14755 |
\begin{align*}
y_{1}^{\prime }&=5 y_{1}-5 y_{2}-5 y_{3} \\
y_{2}^{\prime }&=-y_{1}+4 y_{2}+2 y_{3} \\
y_{3}^{\prime }&=3 y_{1}-5 y_{2}-3 y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| 14756 | \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {2}{y}} \\
y \left (0\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✗ | ✓ | 1.109 |
|
| 14757 |
\begin{align*}
4 y^{\prime \prime } x +2 y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| 14758 |
\begin{align*}
s^{\prime }&=\frac {1}{s+t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| 14759 |
\begin{align*}
x^{\prime }&=a \left (b -x\right )-c f y \\
y^{\prime }&=d \left (x-y\right )-c f y-a y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= b \\
y \left (0\right ) &= \frac {d b}{a +d} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| 14760 |
\begin{align*}
x^{\prime }&=4 x+3 y+5 \operatorname {Heaviside}\left (t -2\right ) \\
y^{\prime }&=x+6 y+17 \operatorname {Heaviside}\left (t -2\right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.110 |
|
| 14761 |
\begin{align*}
y-x +y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.110 |
|
| 14762 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\
x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3}+{\mathrm e}^{t} \cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.111 |
|
| 14763 |
\begin{align*}
y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.111 |
|
| 14764 |
\begin{align*}
y^{\prime }-3 y&=12 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.111 |
|
| 14765 |
\begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 15 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 14766 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 14767 |
\begin{align*}
y^{\prime \prime } x +x^{5} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 14768 |
\begin{align*}
y^{\prime }&=x +5 y \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 14769 |
\begin{align*}
x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.112 |
|
| 14770 |
\begin{align*}
4 x^{\prime }+9 y^{\prime }+2 x+31 y&={\mathrm e}^{t} \\
3 x^{\prime }+7 y^{\prime }+x+24 y&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 14771 |
\begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 14772 |
\begin{align*}
-y+y^{\prime } x&=\left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.112 |
|
| 14773 |
\begin{align*}
y^{\prime \prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 14774 |
\begin{align*}
y^{\prime }&=y \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.112 |
|
| 14775 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.113 |
|
| 14776 | \begin{align*}
x^{\prime }&=-\frac {x}{4}-\frac {3 y}{4}+8 \\
y^{\prime }&=\frac {x}{2}+y-\frac {23}{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.113 |
|
| 14777 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.114 |
|
| 14778 |
\begin{align*}
4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.114 |
|
| 14779 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=-3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.114 |
|
| 14780 |
\begin{align*}
y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=t^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.115 |
|
| 14781 |
\begin{align*}
t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 14782 |
\begin{align*}
x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.115 |
|
| 14783 |
\begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 14784 |
\begin{align*}
3 x^{2} y^{\prime \prime }+4 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 14785 |
\begin{align*}
t^{2} y^{\prime }+2 t y&=1 \\
y \left (2\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 14786 |
\begin{align*}
x^{2}-3 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.116 |
|
| 14787 |
\begin{align*}
x^{\prime }&=9 x-3 y-6 t \\
y^{\prime }&=-x+11 y+10 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.116 |
|
| 14788 |
\begin{align*}
2 y^{3} y^{\prime }+x y^{2}-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.117 |
|
| 14789 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.117 |
|
| 14790 |
\begin{align*}
\left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.117 |
|
| 14791 |
\begin{align*}
y^{\prime \prime }&=a {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.117 |
|
| 14792 |
\begin{align*}
y&=y^{\prime } x +\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.117 |
|
| 14793 |
\begin{align*}
y y^{\prime \prime }-y^{2} y^{\prime }&={y^{\prime }}^{2} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.118 |
|
| 14794 |
\begin{align*}
{\mathrm e}^{x +y} y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.118 |
|
| 14795 | \begin{align*}
y^{\prime \prime \prime \prime }+4 y&=\left (2 t^{2}+t +1\right ) \delta \left (-1+t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 1.118 |
|
| 14796 |
\begin{align*}
-y+2 y^{\prime } x +x^{2} \ln \left (x \right ) y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=2 x^{3} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.118 |
|
| 14797 |
\begin{align*}
y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.118 |
|
| 14798 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\mu x}+\lambda \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.118 |
|
| 14799 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.118 |
|
| 14800 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.118 |
|