| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14801 |
\begin{align*}
x^{\prime }&=-2 x+3 \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| 14802 |
\begin{align*}
y^{\prime \prime } x&=\left (1-y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.120 |
|
| 14803 |
\begin{align*}
y&=x {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.120 |
|
| 14804 |
\begin{align*}
f \left (x {y^{\prime }}^{2}\right )+2 y^{\prime } x -y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.120 |
|
| 14805 |
\begin{align*}
x^{\prime }-y^{\prime }-2 x+4 y&=t \\
x^{\prime }+y^{\prime }-x-y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.120 |
|
| 14806 |
\begin{align*}
\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.120 |
|
| 14807 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+25 y&=0 \\
y \left (1\right ) &= \frac {3 \sqrt {3}}{2} \\
y^{\prime }\left (1\right ) &= {\frac {15}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.121 |
|
| 14808 |
\begin{align*}
{y^{\prime }}^{2}-x y^{\prime } y+y^{2} \ln \left (a y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.121 |
|
| 14809 |
\begin{align*}
-y-\left (2+x \right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.121 |
|
| 14810 |
\begin{align*}
y^{\prime } x&=y+x^{2}+9 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 14811 |
\begin{align*}
x \left (x +1\right )^{2} y y^{\prime \prime }-x \left (x +1\right )^{2} {y^{\prime }}^{2}+2 \left (x +1\right )^{2} y y^{\prime }-a \left (2+x \right ) y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.122 |
|
| 14812 |
\begin{align*}
y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.122 |
|
| 14813 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=1-\operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 14814 |
\begin{align*}
3 x-y^{\prime }-2 y&=8 t \\
x^{\prime }-2 x+y&=16 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 14815 |
\begin{align*}
y^{\prime }+2 y x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 14816 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+13 x&=f \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| 14817 |
\begin{align*}
y_{1}^{\prime }&=y_{1}+2 y_{2}-3 y_{3} \\
y_{2}^{\prime }&=-3 y_{1}+4 y_{2}-2 y_{3} \\
y_{3}^{\prime }&=2 y_{1}+y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| 14818 | \begin{align*}
y^{\prime }&=y^{2}+y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.123 |
|
| 14819 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.124 |
|
| 14820 |
\begin{align*}
x^{2} \left (y-y^{\prime } x \right )&=y {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.124 |
|
| 14821 |
\begin{align*}
\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.125 |
|
| 14822 |
\begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.125 |
|
| 14823 |
\begin{align*}
y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.125 |
|
| 14824 |
\begin{align*}
a y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.125 |
|
| 14825 |
\begin{align*}
v^{\prime }+v&={\mathrm e}^{-s} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.125 |
|
| 14826 |
\begin{align*}
y^{\prime \prime }+\left (\tan \left (x \right )-1\right )^{2} y^{\prime }-n \left (n -1\right ) y \sec \left (x \right )^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.125 |
|
| 14827 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| 14828 |
\begin{align*}
6 y-4 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| 14829 |
\begin{align*}
y^{\prime }&=\left (x +y+1\right )^{2}-\left (x +y-1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| 14830 |
\begin{align*}
y^{\prime \prime }+16 y^{\prime }&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| 14831 |
\begin{align*}
2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.126 |
|
| 14832 |
\begin{align*}
x^{\prime \prime }-x^{\prime }&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| 14833 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.127 |
|
| 14834 |
\begin{align*}
y^{\prime } x +\left (b x +a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.128 |
|
| 14835 |
\begin{align*}
\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.128 |
|
| 14836 |
\begin{align*}
\left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.128 |
|
| 14837 | \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.128 |
|
| 14838 |
\begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.128 |
|
| 14839 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| 14840 |
\begin{align*}
{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| 14841 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }&=-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| 14842 |
\begin{align*}
\left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.129 |
|
| 14843 |
\begin{align*}
x^{\prime }&=-\frac {x}{2}+2 y-3 z \\
y^{\prime }&=y-\frac {z}{2} \\
z^{\prime }&=-2 x+z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| 14844 |
\begin{align*}
\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| 14845 |
\begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 14846 |
\begin{align*}
y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.132 |
|
| 14847 |
\begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 14848 |
\begin{align*}
y&=a y^{\prime }+b {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 14849 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 14850 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| 14851 |
\begin{align*}
3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| 14852 |
\begin{align*}
y^{\prime \prime } x +2 x^{2} y^{\prime }+y \sin \left (x \right )&=\sinh \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.133 |
|
| 14853 |
\begin{align*}
y^{\prime }+4 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| 14854 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| 14855 |
\begin{align*}
y^{\prime }&=y \left (1-y\right ) \left (2-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| 14856 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| 14857 | \begin{align*}
\theta ^{\prime \prime }+4 \theta &=0 \\
\theta \left (0\right ) &= 0 \\
\theta ^{\prime }\left (0\right ) &= 10 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.134 |
|
| 14858 |
\begin{align*}
m x^{\prime \prime }&=f \left (x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.134 |
|
| 14859 |
\begin{align*}
y^{\prime \prime } x +2&=\sqrt {x} \\
y \left (1\right ) &= 8 \\
y^{\prime }\left (1\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.134 |
|
| 14860 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.134 |
|
| 14861 |
\begin{align*}
a^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.135 |
|
| 14862 |
\begin{align*}
2 y^{\prime \prime }&={\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.135 |
|
| 14863 |
\begin{align*}
y^{\prime \prime }+\sqrt {x}\, y^{\prime }+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.135 |
|
| 14864 |
\begin{align*}
\left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{-2+n}+b m \left (m -1\right ) x^{m -2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.135 |
|
| 14865 |
\begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=t^{3}+2 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.135 |
|
| 14866 |
\begin{align*}
y^{\prime }&=y \left (t +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.135 |
|
| 14867 |
\begin{align*}
p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✓ |
✓ |
✓ |
✓ |
1.136 |
|
| 14868 |
\begin{align*}
x^{\prime }&=x+2 y+2 t +1 \\
y^{\prime }&=5 x+y+3 t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.136 |
|
| 14869 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.136 |
|
| 14870 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.136 |
|
| 14871 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.137 |
|
| 14872 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.137 |
|
| 14873 |
\begin{align*}
y^{\prime }&=\sqrt {1-x^{2}-y^{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.138 |
|
| 14874 |
\begin{align*}
x^{\prime }&=x \left (1+{\mathrm e}^{t} x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.138 |
|
| 14875 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.139 |
|
| 14876 |
\begin{align*}
4 y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.139 |
|
| 14877 | \begin{align*}
y^{3}-25 y+y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.139 |
|
| 14878 |
\begin{align*}
-y+y^{\prime } x +y^{\prime \prime }&=f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.140 |
|
| 14879 |
\begin{align*}
-y+2 y^{\prime }&={\mathrm e}^{\frac {t}{3}} \\
y \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.141 |
|
| 14880 |
\begin{align*}
y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.141 |
|
| 14881 |
\begin{align*}
y^{\prime }+y&=\left \{\begin {array}{cc} 1 & 0\le x \le 1 \\ -1 & 1<x \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.141 |
|
| 14882 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{2 y} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.141 |
|
| 14883 |
\begin{align*}
-y+\left (x +1\right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.141 |
|
| 14884 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.141 |
|
| 14885 |
\begin{align*}
y^{\prime }&=2 y-4 \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.142 |
|
| 14886 |
\begin{align*}
y^{\prime }&=\frac {2 y-x -4}{2 x -y+5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.142 |
|
| 14887 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.142 |
|
| 14888 |
\begin{align*}
x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+y x -1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.143 |
|
| 14889 |
\begin{align*}
y^{\prime }&=\sin \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.143 |
|
| 14890 |
\begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=-2 y+3 z \\
z^{\prime }&=-x+3 y-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.144 |
|
| 14891 |
\begin{align*}
y^{\prime } y&=\sqrt {y^{2}+a^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.145 |
|
| 14892 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.145 |
|
| 14893 |
\begin{align*}
y^{\prime \prime } x +n y^{\prime }+b \,x^{1-2 n} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.145 |
|
| 14894 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+x^{n -1} a n -b \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.145 |
|
| 14895 |
\begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.145 |
|
| 14896 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.145 |
|
| 14897 | \begin{align*}
y^{\prime }&=y^{{2}/{3}}+a \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.145 |
|
| 14898 |
\begin{align*}
y^{\prime \prime }+y&=x \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.145 |
|
| 14899 |
\begin{align*}
a -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.146 |
|
| 14900 |
\begin{align*}
y&=y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.147 |
|