| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14601 |
\begin{align*}
y^{\prime }-3 y&=\delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.073 |
|
| 14602 |
\begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.073 |
|
| 14603 |
\begin{align*}
4 y^{3} {y^{\prime }}^{2}+4 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.073 |
|
| 14604 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.074 |
|
| 14605 |
\begin{align*}
y&=y^{\prime } \left (-b +x \right )+\frac {a}{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.074 |
|
| 14606 |
\begin{align*}
x -y+\left (y-x +2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.074 |
|
| 14607 |
\begin{align*}
y^{\prime }&=x^{2}-2 y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.075 |
|
| 14608 |
\begin{align*}
y+y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.075 |
|
| 14609 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (b \,x^{2} a -a x +b^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.076 |
|
| 14610 |
\begin{align*}
2 x^{2} y^{\prime \prime }+7 x \left (x +1\right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.076 |
|
| 14611 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{2 x}+\frac {y}{4 x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.076 |
|
| 14612 |
\begin{align*}
3 y^{\prime \prime } x -4 y^{\prime }+\frac {5 y}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.076 |
|
| 14613 |
\begin{align*}
4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.077 |
|
| 14614 |
\begin{align*}
x^{2} \left (4 x -1\right ) y^{\prime \prime }+x \left (5 x +1\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.077 |
|
| 14615 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.077 |
|
| 14616 |
\begin{align*}
x^{\prime }+\ln \left (3\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.077 |
|
| 14617 |
\begin{align*}
t \left (t^{2}-4\right ) y^{\prime \prime }+y&={\mathrm e}^{t} \\
y \left (1\right ) &= y_{1} \\
y^{\prime }\left (1\right ) &= y_{1} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.077 |
|
| 14618 | \begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.078 |
|
| 14619 |
\begin{align*}
{\mathrm e}^{y} \left (1+y^{\prime }\right )&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| 14620 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| 14621 |
\begin{align*}
x^{\prime }&=x+t +1 \\
x \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| 14622 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| 14623 |
\begin{align*}
y^{\prime } x&=y+y^{2}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| 14624 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| 14625 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (-1\right ) &= 1 \\
y^{\prime }\left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| 14626 |
\begin{align*}
y^{\prime \prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| 14627 |
\begin{align*}
y^{\prime \prime } x -2 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.080 |
|
| 14628 |
\begin{align*}
y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )}&=\frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.080 |
|
| 14629 |
\begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.080 |
|
| 14630 |
\begin{align*}
y^{\prime }&=\left (x -5 y\right )^{{1}/{3}}+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| 14631 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| 14632 |
\begin{align*}
2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (\cos \left (x \right ) x -4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+\sin \left (2 x \right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.082 |
|
| 14633 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| 14634 |
\begin{align*}
y^{\prime \prime }&=y^{\prime }+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| 14635 |
\begin{align*}
y^{\prime }&=y \left (y-3\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| 14636 |
\begin{align*}
x^{\prime }&=3 x+6 y \\
y^{\prime }&=-2 x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.083 |
|
| 14637 | \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=x^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.084 |
|
| 14638 |
\begin{align*}
y^{\prime \prime }-\left (a \,x^{2}+b x c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.084 |
|
| 14639 |
\begin{align*}
x^{\prime }&=3 x-2 y+3 z \\
y^{\prime }&=x-y+2 z+2 \,{\mathrm e}^{-t} \\
z^{\prime }&=-2 x+2 y-2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.084 |
|
| 14640 |
\begin{align*}
y^{\prime }+7 y&={\mathrm e}^{5 x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.084 |
|
| 14641 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x -10 y&=x \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.084 |
|
| 14642 |
\begin{align*}
y^{\prime }&=\ln \left (y\right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.085 |
|
| 14643 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.085 |
|
| 14644 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+9 x_{4} \\
x_{2}^{\prime }&=4 x_{1}+2 x_{2}-10 x_{4} \\
x_{3}^{\prime }&=-x_{3}+8 x_{4} \\
x_{4}^{\prime }&=x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.086 |
|
| 14645 |
\begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y&={\mathrm e}^{x} \left (\left (2+6 x \right ) \cos \left (2 x \right )+3 \sin \left (2 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.086 |
|
| 14646 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{3}+x^{4} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.086 |
|
| 14647 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✗ |
1.086 |
|
| 14648 |
\begin{align*}
y^{\prime \prime }&=1-\cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.086 |
|
| 14649 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| 14650 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\left (y-t \right )^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| 14651 |
\begin{align*}
{\mathrm e}^{x +y} y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| 14652 |
\begin{align*}
y^{\prime \prime }-\left (a \,x^{2}+b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.087 |
|
| 14653 |
\begin{align*}
4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y&=16 t^{{3}/{2}} \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (2 \pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.087 |
|
| 14654 |
\begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| 14655 |
\begin{align*}
x^{2}-2 y x -y^{2}-\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.087 |
|
| 14656 |
\begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| 14657 | \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.088 |
|
| 14658 |
\begin{align*}
y^{\prime }&=3 y \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| 14659 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }&=26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| 14660 |
\begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| 14661 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.088 |
|
| 14662 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| 14663 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| 14664 |
\begin{align*}
y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| 14665 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| 14666 |
\begin{align*}
y^{\prime }&=2 y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| 14667 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a b \,{\mathrm e}^{x \left (\lambda +\mu \right )}+{\mathrm e}^{\lambda x} a c +{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.089 |
|
| 14668 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=13 \operatorname {Heaviside}\left (t -4\right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| 14669 |
\begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| 14670 |
\begin{align*}
y^{\prime \prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.090 |
|
| 14671 |
\begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (a \right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.091 |
|
| 14672 |
\begin{align*}
y^{\prime }&=2 x -3 y \\
y \left (0\right ) &= {\frac {1}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.091 |
|
| 14673 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= \alpha \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.091 |
|
| 14674 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.091 |
|
| 14675 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.091 |
|
| 14676 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2}-2 x_{3}+x_{4} \\
x_{2}^{\prime }&=3 x_{2}-5 x_{3}+3 x_{4} \\
x_{3}^{\prime }&=-13 x_{2}+22 x_{3}-12 x_{4} \\
x_{4}^{\prime }&=-27 x_{2}+45 x_{3}-25 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.092 |
|
| 14677 | \begin{align*}
y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right )&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.092 |
|
| 14678 |
\begin{align*}
y^{\prime \prime }+\frac {\left ({\mathrm e}^{x}+1\right ) y}{1-{\mathrm e}^{x}}&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
1.092 |
|
| 14679 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.092 |
|
| 14680 |
\begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.092 |
|
| 14681 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.093 |
|
| 14682 |
\begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.093 |
|
| 14683 |
\begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.093 |
|
| 14684 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.094 |
|
| 14685 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.094 |
|
| 14686 |
\begin{align*}
y^{\prime \prime }-25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.094 |
|
| 14687 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-4 x_{2}+3 x_{3}+{\mathrm e}^{6 t} \\
x_{2}^{\prime }&=-9 x_{1}-3 x_{2}-9 x_{3}+1 \\
x_{3}^{\prime }&=4 x_{1}+4 x_{2}+3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.095 |
|
| 14688 |
\begin{align*}
2 y-a y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.095 |
|
| 14689 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.095 |
|
| 14690 |
\begin{align*}
y^{\prime \prime }-a \,x^{-2+n} \left (a \,x^{n}+n +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
1.095 |
|
| 14691 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.095 |
|
| 14692 |
\begin{align*}
x^{\prime }&=x+y-\cos \left (t \right ) \\
y^{\prime }&=-y-2 x+\cos \left (t \right )+\sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.095 |
|
| 14693 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| 14694 |
\begin{align*}
{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| 14695 |
\begin{align*}
13 y+5 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| 14696 | \begin{align*}
y^{\prime }+y&=2 x +1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.096 |
|
| 14697 |
\begin{align*}
-y+y^{\prime } x +x^{3} y^{\prime \prime }&=\cos \left (\frac {1}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.096 |
|
| 14698 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| 14699 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| 14700 |
\begin{align*}
2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.097 |
|