| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13501 |
\begin{align*}
y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| 13502 |
\begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| 13503 |
\begin{align*}
y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| 13504 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=6 x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| 13505 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| 13506 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\lambda \left (1+\lambda \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| 13507 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (3 x \right )+x \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| 13508 |
\begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| 13509 |
\begin{align*}
y^{\prime \prime } x -3 y^{\prime }&=5 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| 13510 |
\begin{align*}
3 y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| 13511 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| 13512 |
\begin{align*}
t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| 13513 |
\begin{align*}
\left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.862 |
|
| 13514 |
\begin{align*}
x^{2} \left (x +4\right ) y^{\prime \prime }+7 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| 13515 |
\begin{align*}
x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.862 |
|
| 13516 |
\begin{align*}
2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| 13517 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (a \,x^{m}+b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| 13518 | \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=2-6 x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.862 |
|
| 13519 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| 13520 |
\begin{align*}
3 x^{4} {y^{\prime }}^{2}-y x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| 13521 |
\begin{align*}
y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.863 |
|
| 13522 |
\begin{align*}
x^{\prime \prime }+3025 x&=\cos \left (45 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| 13523 |
\begin{align*}
4 y+y^{\prime \prime }&=4 \tan \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| 13524 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| 13525 |
\begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| 13526 |
\begin{align*}
u^{\prime }&=\alpha \left (1-u\right )-\beta u \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| 13527 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }&={\mathrm e}^{-7 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| 13528 |
\begin{align*}
x^{\prime \prime }+2 h x^{\prime }+k^{2} x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| 13529 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| 13530 |
\begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| 13531 |
\begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.865 |
|
| 13532 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| 13533 |
\begin{align*}
x^{\prime \prime }-\frac {x^{\prime }}{t}&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| 13534 |
\begin{align*}
m s^{\prime \prime }&=\frac {g \,t^{2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| 13535 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| 13536 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=\sin \left (t \right )+\delta \left (t -3 \pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.866 |
|
| 13537 | \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+3 x_{3}+6 x_{4} \\
x_{2}^{\prime }&=3 x_{1}+6 x_{2}+9 x_{3}+18 x_{4} \\
x_{3}^{\prime }&=5 x_{1}+10 x_{2}+15 x_{3}+30 x_{4} \\
x_{4}^{\prime }&=7 x_{1}+14 x_{2}+21 x_{3}+42 x_{4} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.866 |
|
| 13538 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.866 |
|
| 13539 |
\begin{align*}
\left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.866 |
|
| 13540 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\
y \left (-6\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.866 |
|
| 13541 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y&=\left (x +1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.866 |
|
| 13542 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}-x_{2}+3 x_{3} \\
x_{3}^{\prime }&=-x_{2}-3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| 13543 |
\begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| 13544 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| 13545 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| 13546 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}-x_{2}-1 \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| 13547 |
\begin{align*}
\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| 13548 |
\begin{align*}
3 y^{\prime }-7 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| 13549 |
\begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.868 |
|
| 13550 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| 13551 |
\begin{align*}
z^{\prime }+4 i z&={\mathrm e}^{8 i t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| 13552 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| 13553 |
\begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| 13554 |
\begin{align*}
x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (1-n \right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (1-n \right ) x y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| 13555 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| 13556 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=-3 x {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| 13557 | \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.869 |
|
| 13558 |
\begin{align*}
x^{\prime \prime }&=t^{2}-4 t +8 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| 13559 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| 13560 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.870 |
|
| 13561 |
\begin{align*}
x_{1}^{\prime }&=\frac {4 x_{1}}{3}+\frac {4 x_{2}}{3}-\frac {11 x_{3}}{3} \\
x_{2}^{\prime }&=-\frac {16 x_{1}}{3}-\frac {x_{2}}{3}+\frac {14 x_{3}}{3} \\
x_{3}^{\prime }&=3 x_{1}-2 x_{2}-2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.870 |
|
| 13562 |
\begin{align*}
\left (x^{2}+a \right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.870 |
|
| 13563 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.871 |
|
| 13564 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=\left (x^{2}-1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.871 |
|
| 13565 |
\begin{align*}
x \left (x -2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.871 |
|
| 13566 |
\begin{align*}
y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.871 |
|
| 13567 |
\begin{align*}
y&={y^{\prime }}^{2}-y^{\prime } x +x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.871 |
|
| 13568 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.871 |
|
| 13569 |
\begin{align*}
y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.871 |
|
| 13570 |
\begin{align*}
y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y&=0 \\
y \left (10\right ) &= y_{1} \\
y^{\prime }\left (10\right ) &= y_{1} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.871 |
|
| 13571 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-5 x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| 13572 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= -5 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.872 |
|
| 13573 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| 13574 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| 13575 |
\begin{align*}
y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| 13576 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.872 |
|
| 13577 | \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.872 |
|
| 13578 |
\begin{align*}
3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| 13579 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| 13580 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=2 \,{\mathrm e}^{x}-10 \sin \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| 13581 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| 13582 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.874 |
|
| 13583 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=-2 x +2 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.874 |
|
| 13584 |
\begin{align*}
{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.874 |
|
| 13585 |
\begin{align*}
\left (x -a \right )^{2} \left (-b +x \right )^{2} y^{\prime \prime }-c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.874 |
|
| 13586 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.874 |
|
| 13587 |
\begin{align*}
2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.874 |
|
| 13588 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}+5 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-6 x_{1}-6 x_{2}-5 x_{3} \\
x_{3}^{\prime }&=6 x_{1}+6 x_{2}+5 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.875 |
|
| 13589 |
\begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.875 |
|
| 13590 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\frac {2}{y}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.875 |
|
| 13591 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.875 |
|
| 13592 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (1-2 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.875 |
|
| 13593 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \sec \left (2 x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| 13594 |
\begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y&=\sin \left (2 x \right ) {\mathrm e}^{2 x}+2 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| 13595 |
\begin{align*}
\sqrt {1+{y^{\prime }}^{2}}&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| 13596 | \begin{align*}
a \csc \left (x \right )^{2} y+y^{\prime \prime }&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 0.876 |
|
| 13597 |
\begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| 13598 |
\begin{align*}
4 y^{\prime \prime } x +3 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| 13599 |
\begin{align*}
{y^{\prime }}^{3}+\left (\cot \left (x \right ) \cos \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.877 |
|
| 13600 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.877 |
|