| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13401 |
\begin{align*}
x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| 13402 |
\begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.845 |
|
| 13403 |
\begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.845 |
|
| 13404 |
\begin{align*}
y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| 13405 |
\begin{align*}
y^{\prime }&=\frac {y}{\ln \left (y\right )} \\
y \left (0\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| 13406 |
\begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=4 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| 13407 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=\cos \left (a x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| 13408 |
\begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| 13409 |
\begin{align*}
y {y^{\prime }}^{2}+2 a x y^{\prime }-a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.846 |
|
| 13410 |
\begin{align*}
\sqrt {a^{2}-x^{2}}\, \left (-y^{\prime } y-x {y^{\prime }}^{2}+x y y^{\prime \prime }\right )&=b x {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.846 |
|
| 13411 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| 13412 |
\begin{align*}
y^{\prime }&=2 y+1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| 13413 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| 13414 |
\begin{align*}
x_{1}^{\prime }&=\frac {3 x_{1}}{4}+\frac {29 x_{2}}{4}-\frac {11 x_{3}}{2} \\
x_{2}^{\prime }&=-\frac {3 x_{1}}{4}+\frac {3 x_{2}}{4}-\frac {5 x_{3}}{2} \\
x_{3}^{\prime }&=\frac {5 x_{1}}{4}+\frac {11 x_{2}}{4}-\frac {5 x_{3}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| 13415 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y&=3 x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.847 |
|
| 13416 |
\begin{align*}
x^{\prime }&=-4 x+9 y+12 \,{\mathrm e}^{-t} \\
y^{\prime }&=-5 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.847 |
|
| 13417 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.847 |
|
| 13418 | \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.847 |
|
| 13419 |
\begin{align*}
x^{\prime }&=3 x+2 y+2 z \\
y^{\prime }&=x+4 y+z \\
z^{\prime }&=-2 x-4 y-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.847 |
|
| 13420 |
\begin{align*}
y^{\prime \prime }-y&=\delta \left (-1+t \right )-\delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.847 |
|
| 13421 |
\begin{align*}
y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| 13422 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.848 |
|
| 13423 |
\begin{align*}
{y^{\prime }}^{2}+y^{2}&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| 13424 |
\begin{align*}
x^{\prime }+2 x-y&=-{\mathrm e}^{2 t} \\
y^{\prime }+3 x-2 y&=6 \,{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| 13425 |
\begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| 13426 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| 13427 |
\begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (4 x +1\right ) y^{\prime }-\left (49+27 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| 13428 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=-10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| 13429 |
\begin{align*}
y^{\prime } y&=\sqrt {y^{2}-a^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| 13430 |
\begin{align*}
\left (x +a \right ) y+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.849 |
|
| 13431 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| 13432 |
\begin{align*}
x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.849 |
|
| 13433 |
\begin{align*}
x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}-3 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.849 |
|
| 13434 |
\begin{align*}
y^{\prime }+y-x^{\prime }+x&=t \\
x^{\prime }+y^{\prime }+x-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| 13435 |
\begin{align*}
\left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.850 |
|
| 13436 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.850 |
|
| 13437 | \begin{align*}
y^{\prime }&=2 y+3 x \\
y \left (1\right ) &= 4 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.850 |
|
| 13438 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2}+{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2}+{\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13439 |
\begin{align*}
2 a^{2} y-2 a^{2} x y^{\prime }+\left (-a^{2} x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13440 |
\begin{align*}
x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x&=F \cos \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13441 |
\begin{align*}
x^{\prime }&=2 x-3 y \\
y^{\prime }&=5 x+6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13442 |
\begin{align*}
x^{\prime }&=-10 x+10 y \\
y^{\prime }&=28 x-y \\
z^{\prime }&=-\frac {8 z}{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13443 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13444 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13445 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13446 |
\begin{align*}
y^{\prime }&=2 x -y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| 13447 |
\begin{align*}
3 x^{2} y^{\prime \prime }+\left (-x^{2}+5 x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| 13448 |
\begin{align*}
2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 y^{\prime } x -2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| 13449 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-2 x^{2}+x \right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| 13450 |
\begin{align*}
y^{\prime }&=x -2 y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| 13451 |
\begin{align*}
x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=x \left (1-\ln \left (x \right )\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.852 |
|
| 13452 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| 13453 |
\begin{align*}
y^{\prime }&=a x +b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| 13454 |
\begin{align*}
4 y^{\prime } y-4 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.852 |
|
| 13455 |
\begin{align*}
\left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.852 |
|
| 13456 | \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.852 |
|
| 13457 |
\begin{align*}
9 y^{\prime \prime } x +14 y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.852 |
|
| 13458 |
\begin{align*}
3 y&=2 y^{\prime } x -\frac {2 {y^{\prime }}^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.852 |
|
| 13459 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.853 |
|
| 13460 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.853 |
|
| 13461 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.854 |
|
| 13462 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.854 |
|
| 13463 |
\begin{align*}
y^{\prime }&=2 y+\delta \left (t -3\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.854 |
|
| 13464 |
\begin{align*}
{y^{\prime }}^{2}-x y \left (y^{2}+x^{2}\right ) y^{\prime }+y^{4} x^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| 13465 |
\begin{align*}
2 y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-y&=x^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.855 |
|
| 13466 |
\begin{align*}
4 x^{2} y^{\prime \prime }+8 x \left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| 13467 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| 13468 |
\begin{align*}
y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| 13469 |
\begin{align*}
x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 y^{\prime } x +4 y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.855 |
|
| 13470 |
\begin{align*}
y&=a y^{\prime }+b {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| 13471 |
\begin{align*}
y^{\prime }&=-\frac {8 x +5}{3 y^{2}+1} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.856 |
|
| 13472 |
\begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| 13473 |
\begin{align*}
x^{\prime }&=-x-y \\
y^{\prime }&=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\
z^{\prime }&=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| 13474 |
\begin{align*}
y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y&=-t^{2}+2 t -10 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.856 |
|
| 13475 | \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 \delta \left (x -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.856 |
|
| 13476 |
\begin{align*}
y^{\prime \prime }+4 y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| 13477 |
\begin{align*}
y^{\prime \prime }+\lambda ^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| 13478 |
\begin{align*}
3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.856 |
|
| 13479 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| 13480 |
\begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y&=3 y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| 13481 |
\begin{align*}
3 y+y^{\prime }&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.856 |
|
| 13482 |
\begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.857 |
|
| 13483 |
\begin{align*}
y^{\prime }&=t -y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.857 |
|
| 13484 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=8 x^{{5}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.858 |
|
| 13485 |
\begin{align*}
2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.858 |
|
| 13486 |
\begin{align*}
-y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.858 |
|
| 13487 |
\begin{align*}
y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| 13488 |
\begin{align*}
y^{\prime \prime } x +4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| 13489 |
\begin{align*}
y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y&=a \sin \left (n x +\alpha \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| 13490 |
\begin{align*}
x^{\prime }+x+2 y&=2 \,{\mathrm e}^{-t} \\
y^{\prime }+y+z&=1 \\
z^{\prime }+z&=1 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
z \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| 13491 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=4 x^{3}-2 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| 13492 |
\begin{align*}
y \,{\mathrm e}^{2 x}-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.859 |
|
| 13493 |
\begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| 13494 | \begin{align*}
x^{2} y^{\prime \prime }+3 x \left (x +1\right ) y^{\prime }+\left (1-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.859 |
|
| 13495 |
\begin{align*}
c y^{\prime }&=a x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| 13496 |
\begin{align*}
9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| 13497 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| 13498 |
\begin{align*}
2 y&=y^{\prime } x +\frac {a}{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.859 |
|
| 13499 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| 13500 |
\begin{align*}
y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\
y \left (0\right ) &= {\frac {2}{5}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.860 |
|