| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13101 |
\begin{align*}
p^{\prime }&=p-p^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| 13102 |
\begin{align*}
y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| 13103 |
\begin{align*}
x^{\prime \prime }-b x^{\prime }+x&=\sin \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| 13104 |
\begin{align*}
y^{\prime }&=2 y+1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| 13105 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-k^{2}+x^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| 13106 |
\begin{align*}
y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| 13107 |
\begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| 13108 |
\begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| 13109 |
\begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| 13110 |
\begin{align*}
\left (1+y\right ) y^{\prime \prime }&=3 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.801 |
|
| 13111 |
\begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| 13112 |
\begin{align*}
x {y^{\prime }}^{2}-\left (x -a \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| 13113 |
\begin{align*}
y+y^{\prime \prime }+y^{\prime \prime \prime \prime }&=a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| 13114 |
\begin{align*}
x^{4} y^{\prime \prime }&=\left (x^{3}+2 y x \right ) y^{\prime }-4 y^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.801 |
|
| 13115 |
\begin{align*}
\left (x +3\right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=-3\). |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| 13116 |
\begin{align*}
4 x^{2} y^{\prime \prime }+x \left (x^{2}-4\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.802 |
|
| 13117 |
\begin{align*}
1-{y^{\prime \prime }}^{2}+2 x y^{\prime \prime } y^{\prime \prime \prime }+\left (-x^{2}+1\right ) {y^{\prime \prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.802 |
|
| 13118 | \begin{align*}
-y x -\left (2 x^{2}+1\right ) y^{\prime }+2 y^{\prime \prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.802 |
|
| 13119 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (5 x +1\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.802 |
|
| 13120 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.802 |
|
| 13121 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a x -b^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.802 |
|
| 13122 |
\begin{align*}
2 x^{\prime }+y^{\prime }-x-y&={\mathrm e}^{-t} \\
x^{\prime }+2 x+y^{\prime }+y&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.802 |
|
| 13123 |
\begin{align*}
x^{\prime }&=x+y+{\mathrm e}^{-t} \\
y^{\prime }&=4 x-2 y+{\mathrm e}^{2 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.802 |
|
| 13124 |
\begin{align*}
y^{\prime } x&=a \,x^{2}+y+b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.803 |
|
| 13125 |
\begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| 13126 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| 13127 |
\begin{align*}
-\left (n \left (n +1\right )+a^{2} x^{2}\right ) y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| 13128 |
\begin{align*}
a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime }&=8 \cos \left (a x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| 13129 |
\begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| 13130 |
\begin{align*}
y^{\prime }+z^{\prime }+6 y&=0 \\
z^{\prime }+5 y+z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| 13131 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.803 |
|
| 13132 |
\begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.804 |
|
| 13133 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{2}+4 y^{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.804 |
|
| 13134 |
\begin{align*}
t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13135 |
\begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13136 |
\begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13137 | \begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.805 |
|
| 13138 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (1+3 x \right ) y^{\prime }+\left (1-6 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13139 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13140 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13141 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +3 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
0.805 |
|
| 13142 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime }+6 y&=\delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13143 |
\begin{align*}
x^{\prime }&=7 x+4 y-4 z \\
y^{\prime }&=4 x-8 y-z \\
z^{\prime }&=-4 x-y-8 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| 13144 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x^{2}+x +1\right ) y^{\prime }+x \left (-x +2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13145 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=6 x_{2}-7 x_{3}+3 x_{4} \\
x_{3}^{\prime }&=3 x_{3}-x_{4} \\
x_{4}^{\prime }&=-4 x_{2}+9 x_{3}-3 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13146 |
\begin{align*}
x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13147 |
\begin{align*}
2 y^{\prime \prime } x +\left (-x +3\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13148 |
\begin{align*}
a {y^{\prime \prime }}^{n}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.806 |
|
| 13149 |
\begin{align*}
y^{\prime \prime }+9 y&=6 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13150 |
\begin{align*}
x^{\prime }&=4 x-5 y+4 t -1 \\
y^{\prime }&=x-2 y+t \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13151 |
\begin{align*}
x^{\prime }&=x+3 y+a \\
y^{\prime }&=x-y+b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13152 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13153 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{4}-4 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13154 |
\begin{align*}
t y^{\prime }&=y-2 t y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| 13155 |
\begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.807 |
|
| 13156 | \begin{align*}
\sin \left (y^{\prime }\right )&=x +y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.807 |
|
| 13157 |
\(\left [\begin {array}{cccc} 4 & 0 & 0 & -3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 6 & 0 & 0 & -5 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.807 |
|
| 13158 |
\begin{align*}
y&=2 y^{\prime } x -{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.807 |
|
| 13159 |
\begin{align*}
x^{2} y^{\prime \prime }-\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.808 |
|
| 13160 |
\begin{align*}
\left (-a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.808 |
|
| 13161 |
\begin{align*}
x^{2} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+x \left (7 x^{2}+6 x +3\right ) y^{\prime }+\left (-3 x^{2}+6 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| 13162 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| 13163 |
\begin{align*}
y^{\prime \prime } x +\left (x^{3}-1\right ) y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| 13164 |
\begin{align*}
\left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.809 |
|
| 13165 |
\begin{align*}
x^{\prime }-y+z&=0 \\
-x+y^{\prime }-y&=t \\
z^{\prime }-x-z&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| 13166 |
\begin{align*}
-4 y+3 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=\cos \left (x \right )^{2}-\cosh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| 13167 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| 13168 |
\begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.809 |
|
| 13169 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y&={\mathrm e}^{x} x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.810 |
|
| 13170 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.810 |
|
| 13171 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.810 |
|
| 13172 |
\(\left [\begin {array}{cccc} 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.810 |
|
| 13173 |
\begin{align*}
y^{\prime \prime }&=-9 y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.810 |
|
| 13174 |
\begin{align*}
y^{\prime }-f \left (a x +b y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.811 |
|
| 13175 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.811 |
|
| 13176 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.811 |
|
| 13177 | \begin{align*}
y^{\prime }&=y+y^{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.812 |
|
| 13178 |
\begin{align*}
y^{\prime }&=\tan \left (y x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.812 |
|
| 13179 |
\begin{align*}
y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| 13180 |
\begin{align*}
x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.812 |
|
| 13181 |
\begin{align*}
2 y y^{\prime \prime }&=3 y^{4}+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.812 |
|
| 13182 |
\begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.812 |
|
| 13183 |
\begin{align*}
2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| 13184 |
\begin{align*}
y^{\prime \prime }+9 y&=\delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| 13185 |
\begin{align*}
x^{\prime }&=4 x+3 y-6 \,{\mathrm e}^{3 t} \\
y^{\prime }&=x+6 y+2 \,{\mathrm e}^{3 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| 13186 |
\begin{align*}
v^{\prime }&=60 t -4 v \\
v \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| 13187 |
\begin{align*}
4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| 13188 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+3 x_{2} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{3}^{\prime }&=x_{1}+x_{3}+x_{4} \\
x_{4}^{\prime }&=x_{2}+x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| 13189 |
\begin{align*}
2 \left (1-y\right ) y y^{\prime \prime }&=\left (1-3 y\right ) {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.813 |
|
| 13190 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.813 |
|
| 13191 |
\begin{align*}
x^{\prime \prime }+x&=2 \sin \left (t \right )+2 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| 13192 |
\begin{align*}
y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| 13193 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }&=7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| 13194 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}-x_{2}+3 \,{\mathrm e}^{2 t} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}+2 t \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -{\frac {5}{18}} \\
x_{2} \left (0\right ) &= {\frac {47}{9}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| 13195 |
\begin{align*}
9 x^{2} \left (x +5\right ) y^{\prime \prime }+9 x \left (5+9 x \right ) y^{\prime }-\left (5-8 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| 13196 | \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.814 |
|
| 13197 |
\begin{align*}
\sqrt {y^{2}+x^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.814 |
|
| 13198 |
\begin{align*}
x_{1}^{\prime }&=1-x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{2}+t \\
x_{3}^{\prime }&=-2 x_{1}-x_{2}+3 x_{3}+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| 13199 |
\begin{align*}
2 x \left (x +1\right ) y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| 13200 |
\begin{align*}
x^{\prime \prime }+b x^{\prime }+c x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.814 |
|