2.3.133 Problems 13201 to 13300

Table 2.797: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

13201

23047

\begin{align*} T^{\prime \prime }+{T^{\prime }}^{3}&=0 \\ \end{align*}

0.814

13202

10529

\begin{align*} \left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y&=0 \\ \end{align*}

0.815

13203

12869

\begin{align*} y^{\prime \prime }-2 a y y^{\prime }&=0 \\ \end{align*}

0.815

13204

13903

\begin{align*} x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\ \end{align*}

0.815

13205

16744

\begin{align*} y^{\prime \prime }+36 y&=6 \sec \left (6 x \right ) \\ \end{align*}

0.815

13206

17009

\begin{align*} x^{\prime }&=4 y \\ y^{\prime }&=-x-2 y \\ \end{align*}

0.815

13207

18354

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.815

13208

21640

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.815

13209

3980

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=\delta \left (t -2\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.816

13210

7343

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

0.816

13211

14894

\begin{align*} x^{\prime }&=\lambda x \\ \end{align*}

0.816

13212

23261

\begin{align*} y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

0.816

13213

23840

\begin{align*} y^{\prime }&=t +y \\ \end{align*}

0.816

13214

3163

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

0.817

13215

3575

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}

0.817

13216

3588

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

0.817

13217

3908

\begin{align*} x_{1}^{\prime }&=-x_{1}-4 x_{2}-2 x_{3} \\ x_{2}^{\prime }&=-4 x_{1}-5 x_{2}-6 x_{3} \\ x_{3}^{\prime }&=4 x_{1}+8 x_{2}+7 x_{3} \\ \end{align*}

0.817

13218

6273

\begin{align*} \left (a -x \right )^{2} \left (b -x \right )^{2} y^{\prime \prime }&=k^{2} y \\ \end{align*}

0.817

13219

22991

\begin{align*} n^{\prime }&=k n-b t \\ n \left (0\right ) &= n_{0} \\ \end{align*}

0.817

13220

3912

\begin{align*} x_{1}^{\prime }&=2 x_{1}+13 x_{2} \\ x_{2}^{\prime }&=-x_{1}-2 x_{2} \\ x_{3}^{\prime }&=2 x_{3}+4 x_{4} \\ x_{4}^{\prime }&=2 x_{4} \\ \end{align*}

0.818

13221

8415

\begin{align*} y^{\prime }&=-\frac {8 x +5}{3 y^{2}+1} \\ y \left (-1\right ) &= 4 \\ \end{align*}

0.818

13222

15469

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+y \\ \end{align*}

0.818

13223

16967

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ \end{align*}

0.818

13224

23624

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=-x+2 y-z \\ z^{\prime }&=-y+3 z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= -1 \\ \end{align*}

0.818

13225

24993

\begin{align*} y^{\prime }+a y&={\mathrm e}^{-a t} \\ \end{align*}

0.818

13226

891

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right )^{3} x \\ \end{align*}

0.819

13227

988

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }&=-4 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=4 x_{1}+4 x_{2}+2 x_{3} \\ \end{align*}

0.819

13228

1253

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

0.819

13229

8108

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.819

13230

9034

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

0.819

13231

9394

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.819

13232

9863

\begin{align*} 2 \left (1-x \right ) x^{2} y^{\prime \prime }-x \left (1+7 x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.819

13233

10093

\begin{align*} y^{\prime \prime }-y^{\prime }-y x -x^{2}&=0 \\ \end{align*}

0.819

13234

22077

\begin{align*} 2 y^{\prime \prime } x +x^{2} y^{\prime }-y \sin \left (x \right )&=0 \\ \end{align*}

0.819

13235

25605

\begin{align*} -y+y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

0.819

13236

3253

\begin{align*} x^{\prime \prime }+t x^{\prime }&=t^{3} \\ \end{align*}

0.820

13237

6193

\begin{align*} y x +3 x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

0.820

13238

7266

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

0.820

13239

14509

\begin{align*} y^{\prime }+y&=\left \{\begin {array}{cc} {\mathrm e}^{-x} & 0\le x <2 \\ {\mathrm e}^{-2} & 2\le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}

0.820

13240

16095

\begin{align*} y^{\prime \prime }+2 y&=-3 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.820

13241

20098

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y&=\left (x +1\right )^{2} \\ \end{align*}

0.820

13242

4604

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.821

13243

14781

\begin{align*} 2 x^{\prime }+y^{\prime }+x+5 y&=4 t \\ x^{\prime }+y^{\prime }+2 x+2 y&=2 \\ \end{align*}

0.821

13244

17845

\begin{align*} y^{\prime }&=1-\cot \left (y\right ) \\ \end{align*}

0.821

13245

19006

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+3 x_{3} \\ x_{3}^{\prime }&=3 x_{1}-4 x_{2}-2 x_{3} \\ \end{align*}

0.821

13246

23625

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=z-x \\ z^{\prime }&=x+3 y+z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ z \left (0\right ) &= 3 \\ \end{align*}

0.821

13247

3396

\begin{align*} 9 x^{2} y^{\prime \prime }+10 y^{\prime } x +y&=x -1 \\ \end{align*}
Series expansion around \(x=0\).

0.822

13248

7571

\begin{align*} m y^{\prime \prime }+b y^{\prime }+k y&=0 \\ \end{align*}

0.822

13249

8755

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

0.822

13250

9244

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=0 \\ \end{align*}

0.822

13251

11745

\begin{align*} x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

0.822

13252

17079

\begin{align*} y^{\prime }+k y&=0 \\ \end{align*}

0.822

13253

19877

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

0.822

13254

22277

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=6 x_{1}+9 \,{\mathrm e}^{-t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.822

13255

22967

\begin{align*} {\mathrm e}^{x} \left (y^{\prime }+y\right )&=3 \\ \end{align*}

0.822

13256

23680

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y p&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.822

13257

4602

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.823

13258

6399

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \\ \end{align*}

0.823

13259

22806

\begin{align*} Q^{\prime \prime }+k Q&=e \left (t \right ) \\ Q \left (0\right ) &= q_{0} \\ Q^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.823

13260

22808

\begin{align*} y^{\prime \prime }+y&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.823

13261

25224

\begin{align*} 9 t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

0.823

13262

3238

\begin{align*} x^{\prime }+2 x&=3 t \\ x^{\prime }+2 y^{\prime }+y&=\cos \left (2 t \right ) \\ \end{align*}

0.824

13263

8996

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.824

13264

1454

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}-2 \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

0.825

13265

4585

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}-x_{3}+2 \,{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=-x_{1}+x_{2}+2 x_{3} \\ \end{align*}

0.825

13266

5929

\begin{align*} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.825

13267

5960

\begin{align*} -\left (-x^{2}+2\right ) y+x^{2} y^{\prime \prime }&=x^{4} \\ \end{align*}

0.825

13268

9897

\begin{align*} x \left (x -2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.825

13269

19380

\begin{align*} y^{\prime \prime }+2 x {y^{\prime }}^{2}&=0 \\ \end{align*}

0.825

13270

25421

\begin{align*} y+y^{\prime }&=\delta \left (t -2\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}

0.825

13271

2201

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y&=-{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right ) \\ \end{align*}

0.826

13272

3438

\begin{align*} y^{\prime }&=-y \\ \end{align*}

0.826

13273

6016

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.826

13274

6593

\begin{align*} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

0.826

13275

7317

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

0.826

13276

9866

\begin{align*} 2 y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.826

13277

10486

\begin{align*} \left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}

0.826

13278

14507

\begin{align*} y^{\prime }+y&=\left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

0.826

13279

18238

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y&=x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \\ \end{align*}

0.826

13280

15

\begin{align*} x^{\prime \prime }&=4 \left (t +3\right )^{2} \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.827

13281

3558

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

0.827

13282

14778

\begin{align*} x^{\prime }+y^{\prime }-x-3 y&=3 t \\ x^{\prime }+2 y^{\prime }-2 x-3 y&=1 \\ \end{align*}

0.827

13283

16724

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

0.827

13284

23623

\begin{align*} x^{\prime }&=3 x+2 y+2 z \\ y^{\prime }&=x+4 y+z \\ z^{\prime }&=-2 x-4 y-z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= -1 \\ \end{align*}

0.827

13285

23112

\begin{align*} y^{\prime }&=\sqrt {y} \\ \end{align*}

0.828

13286

24468

\begin{align*} y^{\prime \prime }+a^{2} y-2 a y^{\prime }+b^{2} y&=0 \\ \end{align*}

0.828

13287

24895

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\ \end{align*}

0.828

13288

25231

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\ \end{align*}

0.828

13289

25812

\begin{align*} y^{\prime }&=\frac {2 y}{\pi }-\sin \left (y\right ) \\ \end{align*}

0.828

13290

11

\begin{align*} x^{\prime \prime }&=50 \\ x \left (0\right ) &= 20 \\ x^{\prime }\left (0\right ) &= 10 \\ \end{align*}

0.829

13291

1185

\begin{align*} y^{\prime }&=-1+{\mathrm e}^{-y} \\ \end{align*}

0.829

13292

3362

\begin{align*} 4 \left (1-x \right ) x^{2} y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.829

13293

3565

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

0.829

13294

6184

\begin{align*} -2 b y+2 a y^{\prime }+x \left (b x +a \right ) y^{\prime \prime }&=0 \\ \end{align*}

0.829

13295

6255

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.829

13296

8202

\begin{align*} y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

0.829

13297

15975

\begin{align*} x^{\prime }&=3 y \\ y^{\prime }&=3 \pi y-\frac {x}{3} \\ \end{align*}

0.829

13298

21545

\begin{align*} 4 y+y^{\prime \prime }&=\sec \left (2 x \right ) \\ \end{align*}

0.829

13299

10442

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\ \end{align*}

0.830

13300

22220

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+\left (3 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.830