| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 12801 |
\begin{align*}
2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.760 |
|
| 12802 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12803 |
\begin{align*}
2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12804 |
\begin{align*}
-\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.760 |
|
| 12805 |
\begin{align*}
y^{\prime \prime } x +\left (x +n \right ) y^{\prime }+\left (n +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.760 |
|
| 12806 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12807 |
\begin{align*}
-2 y^{\prime }+y^{\prime \prime } x&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12808 |
\begin{align*}
x^{\prime \prime }+x^{\prime }&=3 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12809 |
\begin{align*}
8 x^{2} y^{3}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12810 |
\begin{align*}
x^{\prime }&=-x-2 y \\
y^{\prime }&=4 x-5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12811 |
\begin{align*}
{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{2} y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12812 |
\begin{align*}
x^{\prime }+x+y^{\prime }+y&=0 \\
x^{\prime }-y^{\prime }-y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12813 |
\begin{align*}
y^{\prime }&=\sec \left (y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| 12814 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+y \sin \left (x \right )&=0 \\
y \left (0\right ) &= a_{0} \\
y^{\prime }\left (0\right ) &= a_{1} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.761 |
|
| 12815 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=3 x_{1}+x_{2}-2 x_{3} \\
x_{3}^{\prime }&=2 x_{1}+2 x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.761 |
|
| 12816 |
\begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.761 |
|
| 12817 |
\begin{align*}
2 y+y^{\prime }&=3 x -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.761 |
|
| 12818 | \begin{align*}
x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.761 |
|
| 12819 |
\begin{align*}
y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.761 |
|
| 12820 |
\begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=4 x+5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.761 |
|
| 12821 |
\begin{align*}
-\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.761 |
|
| 12822 |
\begin{align*}
x_{1}^{\prime }&=7 x_{1}-x_{2}+6 x_{3} \\
x_{2}^{\prime }&=-10 x_{1}+4 x_{2}-12 x_{3} \\
x_{3}^{\prime }&=-2 x_{1}+x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.762 |
|
| 12823 |
\begin{align*}
y^{\prime }&=\left (a +b x +y\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.762 |
|
| 12824 |
\begin{align*}
\left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.762 |
|
| 12825 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }-y^{\prime } x +{\mathrm e}^{x} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.762 |
|
| 12826 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2}-2 x_{4} \\
x_{2}^{\prime }&=x_{2} \\
x_{3}^{\prime }&=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\
x_{4}^{\prime }&=-4 x_{2}-x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| 12827 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| 12828 |
\begin{align*}
y^{\prime \prime }+9 y&=\tan \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| 12829 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| 12830 |
\begin{align*}
y^{\prime \prime }+y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| 12831 |
\begin{align*}
{y^{\prime }}^{3}&=y^{4} \left (y^{\prime } x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.763 |
|
| 12832 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+5\right ) y&=x \,{\mathrm e}^{-\frac {x^{2}}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.763 |
|
| 12833 |
\begin{align*}
x^{\prime \prime }+2 x&=\cos \left (t \sqrt {2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| 12834 |
\begin{align*}
2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.764 |
|
| 12835 |
\begin{align*}
2 y^{\prime }+x&=4 \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.764 |
|
| 12836 |
\begin{align*}
x^{\prime }&=x-y-z \\
y^{\prime }&=x+3 y+z \\
z^{\prime }&=-3 x-6 y+6 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.764 |
|
| 12837 |
\begin{align*}
y^{\prime }+y&=x \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.764 |
|
| 12838 | \begin{align*}
y^{\prime }&=-{\mathrm e}^{y}-1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.764 |
|
| 12839 |
\begin{align*}
4 y+y^{\prime \prime }&=12 \cos \left (x \right )^{2} \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| 12840 |
\begin{align*}
\left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2}&={y^{\prime \prime \prime }}^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.765 |
|
| 12841 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| 12842 |
\begin{align*}
4 y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| 12843 |
\begin{align*}
{y^{\prime \prime }}^{2}-2 y^{\prime \prime } x -y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.765 |
|
| 12844 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| 12845 |
\begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| 12846 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=x^{{7}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.766 |
|
| 12847 |
\begin{align*}
16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12848 |
\begin{align*}
t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12849 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2}+\sin \left (t \right ) \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+\tan \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12850 |
\begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=-2 x \\
z^{\prime }&=2 h \\
h^{\prime }&=-2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12851 |
\begin{align*}
16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12852 |
\begin{align*}
x \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12853 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+4 y&=x \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12854 |
\begin{align*}
x^{\prime }&=2 x-7 y \\
y^{\prime }&=5 x+10 y+4 z \\
z^{\prime }&=5 y+2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12855 |
\begin{align*}
{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12856 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| 12857 | \begin{align*}
y^{\prime \prime }&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.766 |
|
| 12858 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=\delta \left (t -\frac {\pi }{4}\right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| 12859 |
\begin{align*}
2 y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.767 |
|
| 12860 |
\begin{align*}
x^{\prime }&=\pi ^{2} x+\frac {187 y}{5} \\
y^{\prime }&=\sqrt {555}\, x+\frac {400617 y}{5000} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| 12861 |
\begin{align*}
y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y&=t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| 12862 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| 12863 |
\begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| 12864 |
\begin{align*}
y^{\prime \prime }+y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| 12865 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| 12866 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {1}{y^{4} x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| 12867 |
\begin{align*}
x \left (y^{\prime \prime }+y\right )-\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.768 |
|
| 12868 |
\begin{align*}
\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime }&=-2-t \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.768 |
|
| 12869 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=4 x +\sin \left (x \right )+\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| 12870 |
\begin{align*}
x^{\prime }&=2 x+4 y \\
y^{\prime }&=-2 x+6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| 12871 |
\begin{align*}
2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.769 |
|
| 12872 |
\begin{align*}
4 x \left (a -x \right ) \left (b -x \right ) {y^{\prime }}^{2}&=\left (a b -2 \left (a +b \right ) x +2 x^{2}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.769 |
|
| 12873 |
\begin{align*}
-\left (-x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.769 |
|
| 12874 |
\begin{align*}
4 y+y^{\prime \prime }&={\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.769 |
|
| 12875 |
\begin{align*}
9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12876 | \begin{align*}
y_{1}^{\prime }&=3 y_{1}+5 y_{2}+8 y_{3} \\
y_{2}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\
y_{3}^{\prime }&=-y_{1}-y_{2}-y_{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.770 |
|
| 12877 |
\begin{align*}
y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12878 |
\begin{align*}
x^{2} y^{\prime \prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12879 |
\begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.770 |
|
| 12880 |
\begin{align*}
2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.770 |
|
| 12881 |
\begin{align*}
x^{\prime }&=-3 x+48 y-28 z \\
y^{\prime }&=-4 x+40 y-22 z \\
z^{\prime }&=-6 x+57 y-31 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12882 |
\begin{align*}
2 y^{\prime \prime } x +\left (x +1\right ) y^{\prime }-k y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12883 |
\begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12884 |
\begin{align*}
x^{\prime }&=\beta y \\
y^{\prime }&=\gamma x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12885 |
\begin{align*}
x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12886 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12887 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| 12888 |
\begin{align*}
9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.771 |
|
| 12889 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.771 |
|
| 12890 |
\begin{align*}
x^{\prime }+2 x-y&=100 \sin \left (t \right ) \\
y^{\prime }-4 x-y&=36 t \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -8 \\
y \left (0\right ) &= -21 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.771 |
|
| 12891 |
\begin{align*}
\frac {2 y}{3}+y^{\prime }&=1-\frac {t}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| 12892 |
\begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y&=\left (x -1\right )^{3} {\mathrm e}^{x} \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.772 |
|
| 12893 |
\begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| 12894 |
\begin{align*}
2 \left (1-x \right ) x y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| 12895 | \begin{align*}
3 x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.772 |
|
| 12896 |
\begin{align*}
y^{\prime \prime }+9 y&=\sec \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| 12897 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| 12898 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}-2 x_{3}+3 x_{4} \\
x_{2}^{\prime }&=2 x_{1}-\frac {3 x_{2}}{2}-x_{3}+\frac {7 x_{4}}{2} \\
x_{3}^{\prime }&=-x_{1}+\frac {x_{2}}{2}-\frac {3 x_{4}}{2} \\
x_{4}^{\prime }&=-2 x_{1}+\frac {3 x_{2}}{2}+3 x_{3}-\frac {7 x_{4}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| 12899 |
\begin{align*}
y^{\prime \prime }+y&=2 \sin \left (3 x \right ) \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| 12900 |
\begin{align*}
{y^{\prime }}^{2}&=4 y \\
y \left (a \right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.773 |
|