2.3.128 Problems 12701 to 12800

Table 2.787: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

12701

11753

\begin{align*} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

0.747

12702

14304

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=5 \sin \left (2 t \right )+{\mathrm e}^{t} t \\ \end{align*}

0.747

12703

15758

\begin{align*} y_{1}^{\prime }&=4 y_{1}+6 y_{2}+6 y_{3} \\ y_{2}^{\prime }&=y_{1}+3 y_{2}+2 y_{3} \\ y_{3}^{\prime }&=-y_{1}-4 y_{2}-3 y_{3} \\ \end{align*}

0.747

12704

16718

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

0.747

12705

16732

\begin{align*} 9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

0.747

12706

17718

\begin{align*} y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.747

12707

24929

\begin{align*} y^{\prime }&=-y+3 t \\ y \left (0\right ) &= 0 \\ \end{align*}

0.747

12708

12682

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} \sin \left (x \right )-2 \cos \left (x \right ) x \right ) y^{\prime }}{x^{2} \cos \left (x \right )}-\frac {\left (2 \cos \left (x \right )-x \sin \left (x \right )\right ) y}{x^{2} \cos \left (x \right )} \\ \end{align*}

0.748

12709

18864

\begin{align*} y^{\prime \prime }+4 y&=3 \sec \left (2 t \right )^{2} \\ \end{align*}

0.748

12710

19000

\begin{align*} x_{1}^{\prime }&=2 x_{1}+2 x_{2}-x_{4} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}+2 x_{4} \\ x_{3}^{\prime }&=3 x_{3} \\ x_{4}^{\prime }&=-x_{1}+2 x_{2}+2 x_{4} \\ \end{align*}

0.748

12711

177

\begin{align*} x^{\prime }&=4 x \left (7-x\right ) \\ x \left (0\right ) &= 11 \\ \end{align*}

0.749

12712

2083

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.749

12713

2250

\begin{align*} y_{1}^{\prime }&=-2 y_{1}+2 y_{2}-6 y_{3} \\ y_{2}^{\prime }&=2 y_{1}+6 y_{2}+2 y_{3} \\ y_{3}^{\prime }&=-2 y_{1}-2 y_{2}+2 y_{3} \\ \end{align*}

0.749

12714

15682

\begin{align*} y^{\prime }-i y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.749

12715

16668

\begin{align*} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime }&=x^{2} \sin \left (3 x \right ) \\ \end{align*}

0.749

12716

19510

\begin{align*} 4 y+y^{\prime \prime }&=\tan \left (2 x \right ) \\ \end{align*}

0.749

12717

1268

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= \beta \\ \end{align*}

0.750

12718

3960

\begin{align*} y^{\prime }-3 y&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

0.750

12719

6055

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.750

12720

8048

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {2}{x^{3}} \\ \end{align*}

0.750

12721

9891

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (1-2 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.750

12722

9966

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (2 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.750

12723

10205

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.750

12724

10315

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x^{2} y^{3}} \\ \end{align*}

0.750

12725

12493

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +a y&=0 \\ \end{align*}

0.750

12726

13707

\begin{align*} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

0.750

12727

15729

\begin{align*} y^{\prime \prime }+a^{2} y&=\delta \left (x -\pi \right ) f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.750

12728

17727

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.750

12729

23104

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

0.750

12730

25543

\begin{align*} y^{\prime \prime }&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.750

12731

15167

\begin{align*} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

0.751

12732

16705

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\tan \left (x \right ) \\ \end{align*}

0.751

12733

19965

\begin{align*} \left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\ \end{align*}

0.751

12734

21679

\begin{align*} 3 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.751

12735

21891

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

0.751

12736

2394

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

0.752

12737

5364

\begin{align*} {y^{\prime }}^{2}&=a^{2} y^{2} \\ \end{align*}

0.752

12738

6484

\begin{align*} 2 y y^{\prime \prime }&=-y^{2} \left (1+a y^{3}\right )+6 {y^{\prime }}^{2} \\ \end{align*}

0.752

12739

8562

\begin{align*} y^{\prime \prime } x -\left (2+x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.752

12740

9906

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.752

12741

22302

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=2 x^{2} \\ \end{align*}

0.752

12742

25584

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 \\ \end{align*}

0.752

12743

2012

\begin{align*} 9 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.753

12744

2205

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y&={\mathrm e}^{x} \left (12 x -2 \cos \left (x \right )+2 \sin \left (x \right )\right ) \\ \end{align*}

0.753

12745

3355

\begin{align*} 9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.753

12746

8588

\begin{align*} y^{\prime \prime } x +\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.753

12747

9559

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.753

12748

18800

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

0.753

12749

19151

\begin{align*} n \,x^{3} y^{\prime \prime }&=\left (y-y^{\prime } x \right )^{2} \\ \end{align*}

0.753

12750

19263

\begin{align*} x \left (x^{2}-4\right ) y^{\prime }&=1 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.753

12751

20199

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

0.753

12752

25376

\begin{align*} y_{1}^{\prime }&=4 y_{2} \\ y_{2}^{\prime }&=-y_{1} \\ y_{3}^{\prime }&=y_{1}+4 y_{2}-y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ y_{3} \left (0\right ) &= 2 \\ \end{align*}

0.753

12753

6228

\begin{align*} -6 y x +6 x^{2} y^{\prime }+\left (-2 x^{3}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.754

12754

7172

\begin{align*} \left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.754

12755

7947

\begin{align*} y^{2} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

0.754

12756

8284

\begin{align*} 2 y+y^{\prime }&=3 x \\ \end{align*}

0.754

12757

8519

\begin{align*} 2 y^{\prime \prime } x -\left (2 x +3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.754

12758

9638

\begin{align*} 2 y^{\prime \prime }+t y^{\prime }-2 y&=10 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.754

12759

21269

\begin{align*} t x^{\prime \prime }&=t x+1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(t=0\).

0.754

12760

22630

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

0.754

12761

996

\begin{align*} x_{1}^{\prime }&=-20 x_{1}+11 x_{2}+13 x_{3} \\ x_{2}^{\prime }&=12 x_{1}-x_{2}-7 x_{3} \\ x_{3}^{\prime }&=-48 x_{1}+21 x_{2}+31 x_{3} \\ \end{align*}

0.755

12762

22561

\begin{align*} u^{\prime }&=-a \left (u-100 t \right ) \\ u \left (0\right ) &= 0 \\ \end{align*}

0.755

12763

23549

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= {\frac {5}{2}} \\ \end{align*}

0.755

12764

23670

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.755

12765

23742

\begin{align*} 2 \left (x +3\right )^{2} y^{\prime \prime }-\left (x^{2}+5 x +6\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=-3\).

0.755

12766

7192

\begin{align*} \left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y&=3 x^{2} \\ \end{align*}
Series expansion around \(x=0\).

0.756

12767

7945

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

0.756

12768

9220

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

0.756

12769

14410

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x+\cos \left (t w \right ) \\ \end{align*}

0.756

12770

15444

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \\ \end{align*}

0.756

12771

15595

\begin{align*} y^{\prime }&=4 y+1 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.756

12772

16737

\begin{align*} y^{\prime \prime }-5 y^{\prime }&=0 \\ \end{align*}

0.756

12773

175

\begin{align*} x^{\prime }&=3 x \left (5-x\right ) \\ x \left (0\right ) &= 8 \\ \end{align*}

0.757

12774

2063

\begin{align*} x^{2} \left (1-2 x \right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.757

12775

3844

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{3} \\ x_{2}^{\prime }&=-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{2}-x_{3} \\ \end{align*}

0.757

12776

3900

\begin{align*} x_{1}^{\prime }&=-x_{1}-5 x_{2}+x_{3} \\ x_{2}^{\prime }&=4 x_{1}-9 x_{2}-x_{3} \\ x_{3}^{\prime }&=3 x_{3} \\ \end{align*}

0.757

12777

4412

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

0.757

12778

4512

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} \\ \end{align*}

0.757

12779

6121

\begin{align*} 2 \left (1-x \right ) y-\left (-x^{2}+2\right ) y^{\prime }+\left (-x +2\right ) x y^{\prime \prime }&=0 \\ \end{align*}

0.757

12780

7034

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right )&=0 \\ \end{align*}

0.757

12781

9718

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

0.757

12782

12322

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

0.757

12783

14639

\begin{align*} 4 y+y^{\prime \prime }&=12 x^{2}-16 x \cos \left (2 x \right ) \\ \end{align*}

0.757

12784

17136

\begin{align*} y^{\prime }&=12+4 y-y^{2} \\ \end{align*}

0.757

12785

20005

\begin{align*} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\ \end{align*}

0.757

12786

25593

\begin{align*} y^{\prime \prime }+y^{\prime }&=t +1 \\ \end{align*}

0.757

12787

14835

\begin{align*} t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x&=0 \\ \end{align*}

0.758

12788

20906

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{2 x}-\frac {\left (x +1\right ) y}{2 x^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.758

12789

21273

\begin{align*} t^{2} x^{\prime \prime }-3 t x^{\prime }+\left (-t +4\right ) x&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.758

12790

23682

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

0.758

12791

2249

\begin{align*} y_{1}^{\prime }&=4 y_{1}-y_{2}-4 y_{3} \\ y_{2}^{\prime }&=4 y_{1}-3 y_{2}-2 y_{3} \\ y_{3}^{\prime }&=y_{1}-y_{2}-y_{3} \\ \end{align*}

0.759

12792

2736

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+10 x_{2}+2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= -4 \\ x_{3} \left (0\right ) &= 13 \\ \end{align*}

0.759

12793

5689

\begin{align*} a \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

0.759

12794

6526

\begin{align*} x \left (x +1\right )^{2} y y^{\prime \prime }&=a \left (2+x \right ) y^{2}-2 \left (x^{2}+1\right ) y y^{\prime }+x \left (x +1\right )^{2} {y^{\prime }}^{2} \\ \end{align*}

0.759

12795

7604

\begin{align*} 3 z^{\prime }+11 z&=0 \\ \end{align*}

0.759

12796

7962

\begin{align*} y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\ \end{align*}

0.759

12797

14983

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.759

12798

15654

\begin{align*} x y^{\prime \prime \prime }+y^{\prime } x&=4 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= -1 \\ \end{align*}

0.759

12799

19040

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}+t \\ \end{align*}

0.759

12800

20093

\begin{align*} x^{2} y^{\prime \prime }+y&=3 x^{2} \\ \end{align*}

0.759