2.3.127 Problems 12601 to 12700

Table 2.785: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

12601

2028

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.734

12602

2065

\begin{align*} x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.734

12603

4503

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

0.734

12604

10377

\begin{align*} y^{\prime \prime }+y^{\prime }&=x \\ \end{align*}

0.734

12605

13921

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y&=0 \\ \end{align*}

0.734

12606

14784

\begin{align*} 3 x^{\prime }+2 y^{\prime }-x+y&=-1+t \\ x^{\prime }+y^{\prime }-x&=t +2 \\ \end{align*}

0.734

12607

18992

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-8 x_{1}-5 x_{2}-3 x_{3} \\ \end{align*}

0.734

12608

19513

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sec \left (2 x \right ) \\ \end{align*}

0.734

12609

24832

\begin{align*} {y^{\prime }}^{2}+y^{2} y^{\prime } x +y^{3}&=0 \\ \end{align*}

0.734

12610

3183

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \\ \end{align*}

0.735

12611

21884

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

0.735

12612

2085

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.736

12613

2362

\begin{align*} y^{\prime \prime }+t y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.736

12614

6169

\begin{align*} -a \left (2+a \right ) y+4 a x y^{\prime }+4 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.736

12615

14367

\begin{align*} x^{\prime }+3 x&=\delta \left (-1+t \right )+\operatorname {Heaviside}\left (t -4\right ) \\ x \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.736

12616

17352

\begin{align*} 2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y&=0 \\ \end{align*}

0.736

12617

17609

\begin{align*} t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

0.736

12618

19262

\begin{align*} \left (x^{2}-1\right ) y^{\prime }&=1 \\ y \left (2\right ) &= 0 \\ \end{align*}

0.736

12619

19590

\begin{align*} 2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.736

12620

1851

\begin{align*} x^{2} \left (1+3 x \right ) y^{\prime \prime }+x \left (x^{2}+12 x +2\right ) y^{\prime }+2 x \left (x +3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.737

12621

1966

\begin{align*} x^{2} \left (8+x \right ) y^{\prime \prime }+x \left (3 x +2\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.737

12622

2431

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

0.737

12623

2448

\begin{align*} 2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.737

12624

2723

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=t^{2} \sin \left (t \right ) \\ \end{align*}

0.737

12625

3164

\begin{align*} y^{\prime \prime }+9 y&=\csc \left (2 x \right ) \\ \end{align*}

0.737

12626

5651

\begin{align*} 8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y&=0 \\ \end{align*}

0.737

12627

5713

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

0.737

12628

5817

\begin{align*} -y+y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

0.737

12629

6203

\begin{align*} 4 y x -\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.737

12630

8846

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+3 t \\ \end{align*}

0.737

12631

13717

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\ \end{align*}

0.737

12632

17997

\begin{align*} {y^{\prime }}^{2}-y^{\prime } y+{\mathrm e}^{x}&=0 \\ \end{align*}

0.737

12633

5444

\begin{align*} 5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

0.738

12634

8618

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.738

12635

10190

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\cos \left (x \right ) x^{3}+\sin \left (x \right )^{2} \\ \end{align*}
Series expansion around \(x=0\).

0.738

12636

14654

\begin{align*} y^{\prime \prime }+y&=3 x^{2}-4 \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.738

12637

15493

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

0.738

12638

21751

\begin{align*} x^{\prime }&=3 x+y-z \\ y^{\prime }&=x+3 y-z \\ z^{\prime }&=3 x+3 y-z \\ \end{align*}

0.738

12639

23053

\begin{align*} s^{\prime \prime }&=5 t^{2}-7 t \\ s \left (0\right ) &= 0 \\ s \left (1\right ) &= {\frac {1}{4}} \\ \end{align*}

0.738

12640

25397

\begin{align*} y^{\prime }&=y \\ y \left (0\right ) &= 1 \\ \end{align*}

0.738

12641

5536

\begin{align*} x^{4} {y^{\prime }}^{2}+y^{2} y^{\prime } x -y^{3}&=0 \\ \end{align*}

0.739

12642

9498

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ \end{align*}

0.739

12643

15765

\begin{align*} y_{1}^{\prime }&=y_{2}+y_{4} \\ y_{2}^{\prime }&=y_{1}-y_{3} \\ y_{3}^{\prime }&=y_{4} \\ y_{4}^{\prime }&=y_{3} \\ \end{align*}

0.739

12644

16264

\begin{align*} y^{\prime }+4 y&=y^{3} \\ \end{align*}

0.739

12645

24930

\begin{align*} y^{\prime }&=y^{2}-y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

0.739

12646

25419

\begin{align*} y^{\prime }&=2 y+\delta \left (t -3\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

0.739

12647

25813

\begin{align*} y^{\prime }&=y^{2}-y-6 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.739

12648

2719

\begin{align*} y^{\prime \prime \prime \prime }+y&=g \left (t \right ) \\ \end{align*}

0.740

12649

8530

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.740

12650

9668

\begin{align*} x^{\prime }&=x+2 y+z \\ y^{\prime }&=6 x-y \\ z^{\prime }&=-x-2 y-z \\ \end{align*}

0.740

12651

13806

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +b \left (a \,x^{n}-1\right ) y&=0 \\ \end{align*}

0.740

12652

19218

\begin{align*} x^{\prime }&=y+z-x \\ y^{\prime }&=x-y+z \\ z^{\prime }&=x+y-z \\ \end{align*}

0.740

12653

19517

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right )^{2} \\ \end{align*}

0.740

12654

21694

\begin{align*} 3 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.740

12655

25404

\begin{align*} y^{\prime }-9 y&=90 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.740

12656

12

\begin{align*} x^{\prime \prime }&=-20 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= -15 \\ \end{align*}

0.741

12657

6035

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=x^{3} \\ \end{align*}

0.741

12658

9636

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.741

12659

12392

\begin{align*} y^{\prime \prime } x +\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y&=0 \\ \end{align*}

0.741

12660

12394

\begin{align*} f \left (x \right ) y+\left (2+f \left (x \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.741

12661

12616

\begin{align*} y^{\prime \prime }&=\frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\ \end{align*}

0.741

12662

13943

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

0.741

12663

24903

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2}&=0 \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.741

12664

2024

\begin{align*} x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.742

12665

16713

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.742

12666

2809

\begin{align*} x^{\prime }&=-x \left (1-x\right ) \\ \end{align*}

0.743

12667

4550

\begin{align*} x^{\prime }-x+y&=\sec \left (t \right ) \\ -2 x+y^{\prime }+y&=0 \\ \end{align*}

0.743

12668

6116

\begin{align*} -a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.743

12669

6522

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

0.743

12670

6987

\begin{align*} y^{\prime }&=2 \sec \left (x \right ) \tan \left (x \right )-\sin \left (x \right ) y^{2} \\ \end{align*}

0.743

12671

9669

\begin{align*} x^{\prime }&=x+z \\ y^{\prime }&=x+y \\ z^{\prime }&=-2 x-z \\ \end{align*}

0.743

12672

10181

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x&=x^{2}+2 x \\ \end{align*}
Series expansion around \(x=0\).

0.743

12673

14959

\begin{align*} 4 y+y^{\prime \prime }&=\cot \left (2 x \right ) \\ \end{align*}

0.743

12674

21689

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.743

12675

23546

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ y \left (1\right ) &= 4 \,{\mathrm e}^{-3} \\ y^{\prime }\left (1\right ) &= -2 \,{\mathrm e}^{-3} \\ \end{align*}

0.743

12676

25287

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t <4 \\ 0 & 4\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.743

12677

1435

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}-{\mathrm e}^{t} \\ \end{align*}

0.744

12678

1947

\begin{align*} 4 x^{2} y^{\prime \prime }+x \left (4 x^{2}+2 x +7\right ) y^{\prime }-\left (-7 x^{2}-4 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.744

12679

2081

\begin{align*} 3 \left (x +3\right ) x^{2} y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.744

12680

2633

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

0.744

12681

4546

\begin{align*} 3 x^{\prime }+2 x+y^{\prime }-6 y&=5 \,{\mathrm e}^{t} \\ 4 x^{\prime }+2 x+y^{\prime }-8 y&=5 \,{\mathrm e}^{t}+2 t -3 \\ \end{align*}

0.744

12682

7653

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.744

12683

8420

\begin{align*} y^{\prime }&=5 y \\ \end{align*}

0.744

12684

17719

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x -7 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.744

12685

19299

\begin{align*} \cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

0.744

12686

25289

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ -1+t & 1\le t <2 \\ 3-t & 2\le t <3 \\ 0 & 3\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.744

12687

1328

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4}&=0 \\ \end{align*}

0.745

12688

8195

\begin{align*} y^{\prime } y+\sqrt {16-y^{2}}&=0 \\ \end{align*}

0.745

12689

11005

\begin{align*} 4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y&=0 \\ \end{align*}

0.745

12690

21889

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+a^{2} y&=x^{2} {\mathrm e}^{-a x} \\ \end{align*}

0.745

12691

22944

\begin{align*} x^{\prime }-3 x-6 y&=9-9 t \\ y^{\prime }+3 x+3 y&=9 t \,{\mathrm e}^{-3 t} \\ \end{align*}

0.745

12692

1820

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=\cos \left (x \right ) x^{3} \\ \end{align*}

0.746

12693

2740

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ x_{3}^{\prime }&=x_{3} \\ \end{align*}

0.746

12694

9000

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.746

12695

19660

\begin{align*} x^{\prime }&=b \,{\mathrm e}^{t} \\ x \left (1\right ) &= 0 \\ \end{align*}

0.746

12696

20438

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}+a^{4}&=0 \\ \end{align*}

0.746

12697

24927

\begin{align*} y^{\prime \prime }&=6 \sin \left (3 t \right ) \\ \end{align*}

0.746

12698

2006

\begin{align*} x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.747

12699

9625

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.747

12700

9745

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

0.747