| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 12201 |
\begin{align*}
y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.692 |
|
| 12202 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=-x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| 12203 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=7 x-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.692 |
|
| 12204 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=x-y \\
z^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 0 \\
z \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| 12205 |
\begin{align*}
y_{1}^{\prime }&=y_{1}+y_{2}+t^{2} \\
y_{2}^{\prime }&=-y_{1}+y_{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| 12206 |
\begin{align*}
x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.693 |
|
| 12207 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.693 |
|
| 12208 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.693 |
|
| 12209 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.693 |
|
| 12210 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.693 |
|
| 12211 |
\begin{align*}
2 y^{\prime \prime } x +y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.693 |
|
| 12212 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\
y \left (2\right ) &= 10 \\
y^{\prime }\left (2\right ) &= 15 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12213 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12214 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.694 |
|
| 12215 |
\begin{align*}
y^{\prime \prime }+16 y&=4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12216 |
\begin{align*}
-\left (-x^{2}+2\right ) y+x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.694 |
|
| 12217 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12218 | \begin{align*}
9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.694 |
|
| 12219 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.694 |
|
| 12220 |
\begin{align*}
y^{\prime \prime }+y&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12221 |
\begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.694 |
|
| 12222 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12223 |
\begin{align*}
y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12224 |
\begin{align*}
t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.694 |
|
| 12225 |
\begin{align*}
x y^{2} \left ({y^{\prime }}^{2}+2\right )&=2 y^{3} y^{\prime }+x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12226 |
\begin{align*}
2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=10 x +\frac {10}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12227 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12228 |
\begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| 12229 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-\left (x +5\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.695 |
|
| 12230 |
\begin{align*}
4 y^{\prime \prime } x +2 \left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| 12231 |
\begin{align*}
4 y^{\prime \prime } x +2 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| 12232 |
\begin{align*}
y^{\prime }&=\frac {\sin \left (x \right )+\cos \left (x \right ) x}{y \left (2 \ln \left (y\right )+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| 12233 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| 12234 |
\begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.695 |
|
| 12235 |
\begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| 12236 |
\begin{align*}
y^{\prime \prime }-x^{2} y-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.696 |
|
| 12237 | \begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✗ | 0.696 |
|
| 12238 |
\begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12239 |
\begin{align*}
x_{1}^{\prime }&=x_{2}+f_{1} \left (t \right ) \\
x_{2}^{\prime }&=-x_{1}+f_{2} \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12240 |
\begin{align*}
x^{\prime }&=2 y+z \\
y^{\prime }&=-2 x+h \\
z^{\prime }&=2 h \\
h^{\prime }&=-2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12241 |
\begin{align*}
b y+2 \tanh \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| 12242 |
\begin{align*}
\left (x +3\right ) y-2 x \left (2+x \right ) y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| 12243 |
\begin{align*}
y^{\prime \prime } x +\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12244 |
\begin{align*}
y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12245 |
\begin{align*}
y^{\prime \prime }-x^{2} y-x^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| 12246 |
\begin{align*}
\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12247 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x^{3}+x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| 12248 |
\begin{align*}
x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| 12249 |
\begin{align*}
\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12250 |
\begin{align*}
x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| 12251 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=x^{3} \sin \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12252 |
\begin{align*}
\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12253 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12254 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-2 c x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12255 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-p^{2}+x^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| 12256 | \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=3 \delta \left (t -\pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.697 |
|
| 12257 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}-6 x_{3} \\
x_{2}^{\prime }&=2 x_{1}-x_{2}-2 x_{3} \\
x_{3}^{\prime }&=4 x_{1}-2 x_{2}-4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| 12258 |
\begin{align*}
x^{\prime }-2 x+y&=0 \\
x+y^{\prime }-2 y&=-5 \,{\mathrm e}^{t} \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| 12259 |
\begin{align*}
-b \left (b \,x^{2}+a \right ) y+a y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.698 |
|
| 12260 |
\begin{align*}
y^{\prime \prime }+16 y&=4 \delta \left (t -3 \pi \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| 12261 |
\begin{align*}
y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| 12262 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{5}+24&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.698 |
|
| 12263 |
\begin{align*}
y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.698 |
|
| 12264 |
\begin{align*}
\left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| 12265 |
\begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| 12266 |
\begin{align*}
x^{2} y^{\prime \prime }+y&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| 12267 |
\begin{align*}
x^{\prime \prime }-p \left (t \right ) x&=q \left (t \right ) \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.698 |
|
| 12268 |
\begin{align*}
t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.699 |
|
| 12269 |
\begin{align*}
y^{\prime \prime }-9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.699 |
|
| 12270 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.699 |
|
| 12271 |
\begin{align*}
x^{\prime \prime }+\pi ^{2} x&=\pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.699 |
|
| 12272 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=8 x-2 y+{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.699 |
|
| 12273 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12274 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12275 |
\begin{align*}
t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12276 | \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \cos \left (x \right ) x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.700 |
|
| 12277 |
\begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=\sin \left (x \right ) \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12278 |
\begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.700 |
|
| 12279 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12280 |
\begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=x^{2} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.700 |
|
| 12281 |
\begin{align*}
\left (2+x \right ) y^{\prime }+y&=\left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right . \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.700 |
|
| 12282 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=\frac {1}{x -2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12283 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12284 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12285 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| 12286 |
\begin{align*}
y_{1}^{\prime }&=6 y_{1}-5 y_{2}+3 y_{3} \\
y_{2}^{\prime }&=2 y_{1}-y_{2}+3 y_{3} \\
y_{3}^{\prime }&=2 y_{1}+y_{2}+y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12287 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12288 |
\begin{align*}
y^{\prime \prime }+y&=3 x \sin \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12289 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12290 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12291 |
\begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12292 |
\begin{align*}
\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.701 |
|
| 12293 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12294 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12295 | \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.701 |
|
| 12296 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=16 x^{3} {\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12297 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12298 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| 12299 |
\begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <4 \\ 0 & 4<t \end {array}\right . \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| 12300 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.702 |
|