| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 12101 |
\begin{align*}
y^{\prime \prime }&=-\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.683 |
|
| 12102 |
\begin{align*}
x^{\prime }+y^{\prime }-y&={\mathrm e}^{t} \\
2 x^{\prime }+y^{\prime }+2 y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| 12103 |
\begin{align*}
\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| 12104 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| 12105 |
\begin{align*}
y^{\prime }&=y \ln \left (y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| 12106 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| 12107 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right )&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| 12108 |
\begin{align*}
x^{\prime }+2 x+5 y&=0 \\
-x+y^{\prime }-2 y&=\sin \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| 12109 |
\begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| 12110 |
\begin{align*}
y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| 12111 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.684 |
|
| 12112 |
\begin{align*}
t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime }&=1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.684 |
|
| 12113 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| 12114 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| 12115 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+\left (1-\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.684 |
|
| 12116 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| 12117 |
\begin{align*}
y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=5 \cos \left (6 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| 12118 | \begin{align*}
y^{\prime }&=2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.685 |
|
| 12119 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| 12120 |
\begin{align*}
y^{\prime \prime }+y&=\cot \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| 12121 |
\begin{align*}
x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.685 |
|
| 12122 |
\begin{align*}
9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.685 |
|
| 12123 |
\begin{align*}
y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=\left (1+\ln \left (x \right )\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| 12124 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| 12125 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| 12126 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=6 x_{1}+4 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| 12127 |
\begin{align*}
x y^{2}+x \sin \left (x \right )^{2}-\sin \left (2 x \right )-2 y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.685 |
|
| 12128 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }-4 y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.686 |
|
| 12129 |
\begin{align*}
y_{1}^{\prime }&=4 y_{1}-2 y_{2}-2 y_{3} \\
y_{2}^{\prime }&=-2 y_{1}+3 y_{2}-y_{3} \\
y_{3}^{\prime }&=2 y_{1}-y_{2}+3 y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.686 |
|
| 12130 |
\begin{align*}
x_{1}^{\prime }&=-x_{2} \\
x_{2}^{\prime }&=x_{1} \\
x_{3}^{\prime }&=x_{2}-x_{4} \\
x_{4}^{\prime }&=x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.686 |
|
| 12131 |
\begin{align*}
x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )&=y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.686 |
|
| 12132 |
\begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }+y x&=2+x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.686 |
|
| 12133 |
\begin{align*}
2 a^{2} y-a^{2} y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=\sinh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12134 |
\begin{align*}
x^{\prime }-x+y^{\prime }+2 y&=1+{\mathrm e}^{t} \\
y^{\prime }+2 y+z^{\prime }+z&={\mathrm e}^{t}+2 \\
x^{\prime }-x+z^{\prime }+z&=3+{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12135 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12136 |
\begin{align*}
y^{\prime }&=4 y+16 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12137 | \begin{align*}
y^{\prime \prime } x&=2 y^{\prime } \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.687 |
|
| 12138 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x+\frac {1}{\cos \left (t \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12139 |
\begin{align*}
x^{\prime \prime }+x&=5 t^{2} \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12140 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=x-y \\
z^{\prime }&=-2 x+2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12141 |
\begin{align*}
x y^{2} {y^{\prime }}^{2}+\left (x^{3}+x y^{2}-y^{3}\right ) y^{\prime }+x^{3}-y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12142 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=\sin \left (2 x \right ) x +x^{3} {\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| 12143 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12144 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12145 |
\begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.688 |
|
| 12146 |
\begin{align*}
3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.688 |
|
| 12147 |
\begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12148 |
\begin{align*}
\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12149 |
\begin{align*}
x^{\prime }&=-7 x+4 y+6 \,{\mathrm e}^{3 t} \\
y^{\prime }&=-5 x+2 y+6 \,{\mathrm e}^{2 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12150 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=\left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12151 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12152 |
\begin{align*}
x_{1}^{\prime }&=a x_{1} \\
x_{2}^{\prime }&=a x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{2}+a x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| 12153 |
\begin{align*}
8 x^{2} y^{\prime \prime }-2 x \left (-x^{2}-4 x +3\right ) y^{\prime }+\left (x^{2}+6 x +3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12154 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.689 |
|
| 12155 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12156 | \begin{align*}
{y^{\prime }}^{2}&=x +y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.689 |
|
| 12157 |
\begin{align*}
y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.689 |
|
| 12158 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}+y_{2}-2 y_{3} \\
y_{2}^{\prime }&=3 y_{2}-2 y_{3} \\
y_{3}^{\prime }&=3 y_{1}+y_{2}-3 y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12159 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=\cos \left (2 x \right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12160 |
\begin{align*}
x^{\prime \prime }+x&=\cos \left (\frac {9 t}{10}\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12161 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12162 |
\begin{align*}
v^{\prime \prime }-6 v^{\prime }+13 v&={\mathrm e}^{-2 u} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12163 |
\begin{align*}
\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12164 |
\begin{align*}
x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 \ln \left (x \right ) x^{2}\right ) y^{\prime }-\left (2+4 x \right ) y&={\mathrm e}^{2 x} \left (1-2 x \ln \left (x \right )\right )^{2} \\
y \left (\frac {1}{2}\right ) &= \frac {{\mathrm e}}{2} \\
y^{\prime }\left (\frac {1}{2}\right ) &= {\mathrm e} \left (2+\ln \left (2\right )\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.689 |
|
| 12165 |
\begin{align*}
2 x^{2}+y x -2 y^{2}-\left (x^{2}-4 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12166 |
\begin{align*}
y^{\prime }-a y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| 12167 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| 12168 |
\begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| 12169 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| 12170 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=x+2 y+z \\
z^{\prime }&=3 y-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| 12171 |
\begin{align*}
y^{\prime \prime }-x^{3} y^{\prime }-y x -x^{3}-x^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.690 |
|
| 12172 |
\begin{align*}
y^{\prime \prime }-y&=x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| 12173 |
\begin{align*}
y^{\prime \prime }+k y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| 12174 |
\begin{align*}
y^{\prime \prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| 12175 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+2 \,{\mathrm e}^{t} \\
x_{2}^{\prime }&=4 x_{1}+x_{2}-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12176 | \begin{align*}
x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (5+18 x \right ) y^{\prime }-\left (1-12 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.691 |
|
| 12177 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+18 y^{\prime }&=-{\mathrm e}^{3 x} \left (\left (2-3 x \right ) \cos \left (3 x \right )-\left (3 x +3\right ) \sin \left (3 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12178 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=\sin \left (t \right )+{\mathrm e}^{2 t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12179 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| 12180 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12181 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-7 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| 12182 |
\begin{align*}
y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=A \cos \left (p x \right ) \\
y \left (0\right ) &= 9 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12183 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| 12184 |
\begin{align*}
x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| 12185 |
\begin{align*}
x^{\prime }+2 x+y^{\prime }+y&=t \\
5 x+y^{\prime }+3 y&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12186 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12187 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12188 |
\begin{align*}
-6 y x -y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| 12189 |
\begin{align*}
\left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12190 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12191 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=2 \cos \left (m x \right )+3 \sin \left (m x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12192 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=5+10 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12193 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=2 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12194 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 x -40 \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| 12195 | \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.691 |
|
| 12196 |
\begin{align*}
x_{1}^{\prime }&=-4 x_{1}+2 x_{2}+\frac {1}{t} \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+\frac {2}{t}+4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| 12197 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| 12198 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| 12199 |
\begin{align*}
y^{\prime }+2 y&=1 \\
y \left (0\right ) &= {\frac {5}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| 12200 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.692 |
|