2.3.113 Problems 11201 to 11300

Table 2.757: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

11201

895

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \\ \end{align*}

0.602

11202

1981

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.602

11203

2644

\begin{align*} 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.602

11204

3825

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-b x_{1}-a x_{2} \\ \end{align*}

0.602

11205

5915

\begin{align*} y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.602

11206

6394

\begin{align*} 2+4 y^{\prime } x +x^{2} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.602

11207

7111

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

0.602

11208

8477

\begin{align*} \left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.602

11209

9753

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

0.602

11210

14117

\begin{align*} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=10 x +\frac {10}{x} \\ \end{align*}

0.602

11211

14186

\begin{align*} x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (x +2 y\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.602

11212

14630

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \\ \end{align*}

0.602

11213

15168

\begin{align*} y^{\prime \prime } x +x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}

0.602

11214

15806

\begin{align*} y^{\prime }&=\frac {1}{2 y+3} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.602

11215

16248

\begin{align*} y^{\prime }&=200 y-2 y^{2} \\ \end{align*}

0.602

11216

17791

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.602

11217

19119

\begin{align*} y&=2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \\ \end{align*}

0.602

11218

22286

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.602

11219

22696

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=4 \sin \left (3 x \right )^{3} \\ \end{align*}

0.602

11220

23501

\begin{align*} y^{\prime \prime }&=3 \\ \end{align*}

0.602

11221

25382

\begin{align*} y_{1}^{\prime }&=5 y_{1}+2 y_{2}+t \\ y_{2}^{\prime }&=-8 y_{1}-3 y_{2}-2 t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

0.602

11222

1393

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.603

11223

3746

\begin{align*} y^{\prime \prime }+9 y&=18 \sec \left (3 x \right )^{3} \\ \end{align*}

0.603

11224

4545

\begin{align*} x^{\prime }-2 x+2 y^{\prime }&=-4 \,{\mathrm e}^{2 t} \\ 2 x^{\prime }-3 x+3 y^{\prime }-y&=0 \\ \end{align*}

0.603

11225

9826

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

0.603

11226

10978

\begin{align*} x^{2} \left (2+x \right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y&=0 \\ \end{align*}

0.603

11227

12477

\begin{align*} \left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.603

11228

15945

\begin{align*} y^{\prime }&=3-2 y \\ \end{align*}

0.603

11229

16139

\begin{align*} y^{\prime \prime }+3 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.603

11230

17788

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=x \,{\mathrm e}^{x} \\ \end{align*}
Series expansion around \(x=0\).

0.603

11231

20879

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.603

11232

21154

\begin{align*} x^{\prime \prime }+4 x^{\prime }+x&=k \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.603

11233

23738

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.603

11234

458

\begin{align*} y^{\prime \prime } x +x^{2} y^{\prime }+\left ({\mathrm e}^{x}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.604

11235

918

\begin{align*} x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.604

11236

3842

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+6 x_{3} \\ x_{2}^{\prime }&=-2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=-x_{1}-2 x_{2}-4 x_{3} \\ \end{align*}

0.604

11237

3957

\begin{align*} -y+y^{\prime }&=4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.604

11238

5605

\begin{align*} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-a&=0 \\ \end{align*}

0.604

11239

15495

\begin{align*} y^{\prime }+3 y&=0 \\ \end{align*}

0.604

11240

17707

\begin{align*} \left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.604

11241

24911

\begin{align*} y^{\prime }&=2 y \left (y-1\right ) \\ \end{align*}

0.604

11242

1015

\begin{align*} x_{1}^{\prime }&=25 x_{1}+12 x_{2} \\ x_{2}^{\prime }&=-18 x_{1}-5 x_{2} \\ x_{3}^{\prime }&=6 x_{1}+6 x_{2}+13 x_{3} \\ \end{align*}

0.605

11243

1016

\begin{align*} x_{1}^{\prime }&=-19 x_{1}+12 x_{2}+84 x_{3} \\ x_{2}^{\prime }&=5 x_{2} \\ x_{3}^{\prime }&=-8 x_{1}+4 x_{2}+33 x_{3} \\ \end{align*}

0.605

11244

1017

\begin{align*} x_{1}^{\prime }&=-13 x_{1}+40 x_{2}-48 x_{3} \\ x_{2}^{\prime }&=-8 x_{1}+23 x_{2}-24 x_{3} \\ x_{3}^{\prime }&=3 x_{3} \\ \end{align*}

0.605

11245

1979

\begin{align*} 2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.605

11246

2397

\begin{align*} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.605

11247

2713

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

0.605

11248

3143

\begin{align*} 8 y^{\prime \prime }-y&=x \,{\mathrm e}^{-\frac {x}{2}} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

0.605

11249

3486

\begin{align*} f^{\prime \prime }+6 f^{\prime }+9 f&={\mathrm e}^{-t} \\ f \left (0\right ) &= 0 \\ f^{\prime }\left (0\right ) &= \lambda \\ \end{align*}

0.605

11250

3512

\begin{align*} z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(z=0\).

0.605

11251

4175

\begin{align*} 2 y_{1}^{\prime }+y_{2}^{\prime }-4 y_{1}-y_{2}&={\mathrm e}^{x} \\ y_{1}^{\prime }+3 y_{1}+y_{2}&=0 \\ \end{align*}

0.605

11252

5984

\begin{align*} -\left (-a^{2} x^{2}+p^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.605

11253

9692

\begin{align*} x^{\prime }&=3 x+2 y+4 z \\ y^{\prime }&=2 x+2 z \\ z^{\prime }&=4 x+2 y+3 z \\ \end{align*}

0.605

11254

10131

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3}&=0 \\ \end{align*}

0.605

11255

16688

\begin{align*} 4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\ \end{align*}

0.605

11256

17816

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.605

11257

18263

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=9 x^{2}-12 x +2 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

0.605

11258

18270

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.605

11259

22323

\begin{align*} y^{\prime }&={\mathrm e}^{y} \\ y \left (1\right ) &= 0 \\ \end{align*}

0.605

11260

25227

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }-21 y&=0 \\ \end{align*}

0.605

11261

25343

\begin{align*} t^{2} y^{\prime \prime }+3 t \left (1+3 t \right ) y^{\prime }+\left (-t^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.605

11262

25555

\begin{align*} y^{\prime \prime }+5 y^{\prime }+c y&={\mathrm e}^{i \omega t} \\ \end{align*}

0.605

11263

1989

\begin{align*} 8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.606

11264

1997

\begin{align*} 4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.606

11265

3002

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=x \left (-x^{2}+1\right ) \sqrt {y} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.606

11266

3203

\begin{align*} y^{\prime \prime \prime \prime }-y&=x^{2} \cos \left (x \right ) \\ \end{align*}

0.606

11267

6200

\begin{align*} -y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.606

11268

7305

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\ \end{align*}

0.606

11269

13753

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+2\right ) y^{\prime }+a \,x^{n -1} y&=0 \\ \end{align*}

0.606

11270

17498

\begin{align*} y^{\prime \prime }-25 y&=\frac {1}{1-{\mathrm e}^{5 t}} \\ \end{align*}

0.606

11271

17530

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

0.606

11272

18273

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=16 \,{\mathrm e}^{-x}+9 x -6 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.606

11273

24901

\begin{align*} x^{4} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }+x^{3}\right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

0.606

11274

16839

\begin{align*} \left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.607

11275

18990

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+6 x_{3} \\ x_{2}^{\prime }&=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }&=6 x_{1}+x_{2}+x_{3} \\ \end{align*}

0.607

11276

20349

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (2 x \right )+\cos \left (2 x \right ) \\ \end{align*}

0.607

11277

20939

\begin{align*} x^{\prime }&=4 x-13 y \\ y^{\prime }&=2 x-6 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.607

11278

20996

\begin{align*} x^{\prime }&=x-y+2 z \\ y^{\prime }&=-x+y+2 z \\ z^{\prime }&=x+y \\ \end{align*}

0.607

11279

22202

\begin{align*} 8 x^{2} y^{\prime \prime }+10 y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.607

11280

22209

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.607

11281

2016

\begin{align*} x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.608

11282

3313

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 y^{\prime } x \\ \end{align*}

0.608

11283

3434

\begin{align*} y^{\prime }&=1-y \\ \end{align*}

0.608

11284

4540

\begin{align*} x^{\prime }&=2 x-3 y+t \,{\mathrm e}^{-t} \\ y^{\prime }&=2 x-3 y+{\mathrm e}^{-t} \\ \end{align*}

0.608

11285

8262

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.608

11286

8597

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{49}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.608

11287

9750

\begin{align*} y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\ \end{align*}

0.608

11288

12369

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+a y&=0 \\ \end{align*}

0.608

11289

15008

\begin{align*} x^{\prime }&=7 x-5 y \\ y^{\prime }&=10 x-3 y \\ \end{align*}

0.608

11290

18676

\begin{align*} x^{\prime }&=-5 y \\ y^{\prime }&=x+a y \\ \end{align*}

0.608

11291

19060

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2} \\ x_{2}^{\prime }&=-14 x_{1}-5 x_{2}+x_{3} \\ x_{3}^{\prime }&=15 x_{1}+5 x_{2}-2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 5 \\ x_{2} \left (0\right ) &= 5 \\ x_{3} \left (0\right ) &= -4 \\ \end{align*}

0.608

11292

20839

\begin{align*} 8 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.608

11293

22168

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

0.608

11294

509

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.609

11295

1833

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=\left (3 x -1\right )^{2} {\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.609

11296

2276

\begin{align*} y_{1}^{\prime }&=5 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }&=-y_{1}+9 y_{2}-3 y_{3} \\ y_{3}^{\prime }&=-2 y_{1}+2 y_{2}+4 y_{3} \\ \end{align*}

0.609

11297

2688

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.609

11298

2698

\begin{align*} x^{\prime }&=-2 x+y+t \\ y^{\prime }&=-4 x+3 y-1 \\ \end{align*}

0.609

11299

3377

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.609

11300

7778

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=85 \sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= -20 \\ \end{align*}

0.609