| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 11301 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11302 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\ln \left (x \right ) \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
0.609 |
|
| 11303 |
\begin{align*}
x^{4} y^{\prime \prime }-x^{2} y^{\prime } \left (x +y^{\prime }\right )+4 y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.609 |
|
| 11304 |
\begin{align*}
x^{\prime \prime }+x&=\sin \left (t \right )-\cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11305 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11306 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4}&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11307 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11308 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11309 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11310 |
\begin{align*}
y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11311 |
\begin{align*}
y^{\prime }-3 y&=\operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| 11312 |
\begin{align*}
2 x^{2} y^{\prime \prime }+x \left (x +5\right ) y^{\prime }-\left (2-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| 11313 |
\begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (t +1\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| 11314 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| 11315 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| 11316 |
\begin{align*}
x_{1}^{\prime }&=\frac {x_{1}}{2}-x_{2}-\frac {3 x_{3}}{2} \\
x_{2}^{\prime }&=\frac {3 x_{1}}{2}-2 x_{2}-\frac {3 x_{3}}{2} \\
x_{3}^{\prime }&=-2 x_{1}+2 x_{2}+x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 1 \\
x_{3} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| 11317 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y&=\sinh \left (x \right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.610 |
|
| 11318 | \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.610 |
|
| 11319 |
\begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }-a \,t^{2} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| 11320 |
\begin{align*}
x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.611 |
|
| 11321 |
\begin{align*}
2 \left (1-y\right ) y y^{\prime \prime }&=-\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.611 |
|
| 11322 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.611 |
|
| 11323 |
\begin{align*}
x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.611 |
|
| 11324 |
\begin{align*}
y^{\prime \prime }+y&=2 \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.611 |
|
| 11325 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.611 |
|
| 11326 |
\begin{align*}
x^{\prime }&=3 x+5 y \\
y^{\prime }&=-x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.611 |
|
| 11327 |
\begin{align*}
y^{\prime }&=\left (1-y^{2}\right ) \left (4-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.611 |
|
| 11328 |
\begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11329 |
\begin{align*}
3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.612 |
|
| 11330 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11331 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11332 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11333 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+\frac {y}{4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11334 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x -18 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11335 |
\begin{align*}
a y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11336 |
\begin{align*}
2 x^{2} y \left (y-1\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (y-1\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (y-1\right )^{3}+c x y^{2} \left (y-1\right )+d \,x^{2} y^{2} \left (1+y\right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.612 |
|
| 11337 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11338 | \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.612 |
|
| 11339 |
\begin{align*}
y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.612 |
|
| 11340 |
\begin{align*}
y^{\prime \prime }+y&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11341 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| 11342 |
\begin{align*}
4 t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11343 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=-8 x_{1}+4 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11344 |
\begin{align*}
y+\left (y^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11345 |
\begin{align*}
x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11346 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11347 |
\begin{align*}
x^{\prime }&=x+2 y+t -1 \\
y^{\prime }&=3 x+2 y-5 t -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11348 |
\begin{align*}
x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11349 |
\begin{align*}
4 y+y^{\prime \prime }&=8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| 11350 |
\begin{align*}
x_{1}^{\prime }&=-8 x_{1}-11 x_{2}-2 x_{3} \\
x_{2}^{\prime }&=6 x_{1}+9 x_{2}+2 x_{3} \\
x_{3}^{\prime }&=-6 x_{1}-6 x_{2}+x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 5 \\
x_{2} \left (0\right ) &= -7 \\
x_{3} \left (0\right ) &= 11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| 11351 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
x_{3}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\
x_{4}^{\prime }&=x_{2}+x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| 11352 |
\begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=1-\operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| 11353 |
\begin{align*}
4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.614 |
|
| 11354 |
\begin{align*}
t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| 11355 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-x_{1} \\
x_{3}^{\prime }&=-x_{4} \\
x_{4}^{\prime }&=x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| 11356 |
\begin{align*}
x^{\prime }&=3 t^{2}+4 t \\
x \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| 11357 | \begin{align*}
m y^{\prime \prime }+k y&=f \left (t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.614 |
|
| 11358 |
\begin{align*}
m y^{\prime \prime }-k y&={\mathrm e}^{i \omega t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| 11359 |
\begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (6 t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11360 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}+4 x_{3} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{3} \\
x_{3}^{\prime }&=4 x_{1}+2 x_{2}+3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11361 |
\begin{align*}
f^{\prime \prime }+2 f^{\prime }+5 f&={\mathrm e}^{-t} \cos \left (3 t \right ) \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11362 |
\begin{align*}
z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y&=0 \\
\end{align*} Series expansion around \(z=0\). |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11363 |
\begin{align*}
\left ({y^{\prime }}^{2}+a \left (-y+y^{\prime } x \right )\right ) y^{\prime \prime }&=b \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.615 |
|
| 11364 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11365 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.615 |
|
| 11366 |
\begin{align*}
a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (-1+2 y\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.615 |
|
| 11367 |
\begin{align*}
\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.615 |
|
| 11368 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=1-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11369 |
\begin{align*}
\left (8 {y^{\prime }}^{3}-27\right ) x&=12 y {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.615 |
|
| 11370 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11371 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11372 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| 11373 |
\begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.616 |
|
| 11374 |
\begin{align*}
4 y+y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11375 |
\begin{align*}
-4 y+y^{\prime }+2 x \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11376 | \begin{align*}
2 y+2 \left (-x +2\right ) y^{\prime }+\left (-x +2\right )^{2} x y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.616 |
|
| 11377 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11378 |
\begin{align*}
y^{\prime }-y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11379 |
\begin{align*}
x^{\prime }&=5 x-4 y \\
y^{\prime }&=x+2 z \\
z^{\prime }&=2 y+5 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11380 |
\begin{align*}
\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11381 |
\begin{align*}
x^{\prime }&=2 x-y+z \\
y^{\prime }&=x+2 y-z \\
z^{\prime }&=x-y+2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11382 |
\begin{align*}
x^{\prime }&=-y+\sin \left (t \right ) \\
y^{\prime }&=x+\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11383 |
\begin{align*}
-2 y+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11384 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x+3 \\
\end{align*} With initial conditions \begin{align*}
x \left (\pi \right ) &= 1 \\
y \left (\pi \right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11385 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11386 |
\begin{align*}
\left (x -1\right ) \left (2+x \right ) y^{\prime \prime }+\left (x +\frac {1}{2}\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11387 |
\begin{align*}
y^{\prime }&=x^{2}+6 y+4 z \\
z^{\prime }&=y+3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11388 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11389 |
\begin{align*}
y_{1}^{\prime }&=-y_{1}+3 y_{3} \\
y_{2}^{\prime }&=2 y_{2} \\
y_{3}^{\prime }&=y_{3} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 1 \\
y_{3} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| 11390 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.617 |
|
| 11391 |
\begin{align*}
4 y+y^{\prime \prime }&=2 x -2 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| 11392 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| 11393 |
\begin{align*}
a y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| 11394 |
\begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.617 |
|
| 11395 | \begin{align*}
x^{\prime }&=7 x+6 y \\
y^{\prime }&=2 x+6 y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.617 |
|
| 11396 |
\begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| 11397 |
\begin{align*}
4 y^{\prime \prime }+y&=2 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| 11398 |
\begin{align*}
y^{\prime }&=y-t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| 11399 |
\begin{align*}
y^{\prime \prime }+y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| 11400 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.618 |
|