| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 10901 |
\begin{align*}
\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10902 |
\begin{align*}
x^{2} y^{\prime \prime }&=y^{\prime } x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10903 |
\begin{align*}
2 {y^{\prime }}^{2} \left (y-y^{\prime } x \right )&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.580 |
|
| 10904 |
\begin{align*}
y^{\prime \prime }+y&=8 \cos \left (x \right ) \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10905 |
\begin{align*}
-\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.580 |
|
| 10906 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.580 |
|
| 10907 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10908 |
\begin{align*}
y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10909 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10910 |
\begin{align*}
x^{\prime }&=8 x-5 y \\
y^{\prime }&=16 x+8 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10911 |
\begin{align*}
y^{\prime }&=2 y \left (5-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10912 |
\begin{align*}
y y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| 10913 |
\begin{align*}
3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10914 |
\begin{align*}
2 y^{\prime \prime } x +5 \left (1-2 x \right ) y^{\prime }-5 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10915 |
\begin{align*}
-a y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.581 |
|
| 10916 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10917 |
\begin{align*}
\left (3 x^{2}+1\right ) y^{\prime \prime }+13 y^{\prime } x +7 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10918 | \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.581 |
|
| 10919 |
\begin{align*}
\theta ^{\prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10920 |
\begin{align*}
y^{\prime \prime } x&=-y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10921 |
\begin{align*}
4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10922 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime }&=6 x_{1}+4 x_{2}+6 x_{3} \\
x_{3}^{\prime }&=-5 x_{1}-2 x_{2}-4 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= -2 \\
x_{3} \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10923 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10924 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10925 |
\begin{align*}
y^{\prime }&=2-y \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| 10926 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\
x \left (0\right ) &= 10 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10927 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=-x_{1}+3 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=-x_{2}+3 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10928 |
\begin{align*}
x_{1}^{\prime }&=x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-3 x_{2}-7 x_{3} \\
x_{3}^{\prime }&=x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10929 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.582 |
|
| 10930 |
\begin{align*}
6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10931 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10932 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10933 |
\begin{align*}
-2 y+\left (1-4 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.582 |
|
| 10934 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right )+{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10935 |
\begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10936 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10937 | \begin{align*}
y^{\prime }&=\left (\cos \left (x \right )+y\right )^{2}+\sin \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.582 |
|
| 10938 |
\begin{align*}
x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.582 |
|
| 10939 |
\begin{align*}
x^{\prime }&=-2 x+3 y \\
y^{\prime }&=-6 x+4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10940 |
\begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.582 |
|
| 10941 |
\begin{align*}
y^{\prime \prime } x +\left (1-{\mathrm e}^{x}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10942 |
\begin{align*}
y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10943 |
\begin{align*}
y^{\prime \prime }-y&=2 \sinh \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10944 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \ln \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10945 |
\begin{align*}
y^{\prime \prime }-16 y&=16 t \,{\mathrm e}^{-4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10946 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (\frac {t}{4}\right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10947 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.582 |
|
| 10948 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10949 |
\begin{align*}
y^{\prime }&=10+3 y-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| 10950 |
\begin{align*}
y_{1}^{\prime }&=2 y_{2}-2 y_{3} \\
y_{2}^{\prime }&=-y_{1}+5 y_{2}-3 y_{3} \\
y_{3}^{\prime }&=y_{1}+y_{2}+y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10951 |
\begin{align*}
x^{\prime }&=3 x+2 y+4 z \\
y^{\prime }&=2 x+2 z \\
z^{\prime }&=4 x+2 y+3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10952 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.583 |
|
| 10953 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+5 \,{\mathrm e}^{4 t} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10954 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{2 x}+\frac {y}{4 x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10955 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10956 | \begin{align*}
\cos \left (x \right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.583 |
|
| 10957 |
\begin{align*}
x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y^{\prime } y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.583 |
|
| 10958 |
\begin{align*}
x^{2} y^{\prime \prime }-6 y&=\ln \left (x \right ) \\
y \left (1\right ) &= {\frac {1}{6}} \\
y^{\prime }\left (1\right ) &= -{\frac {1}{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10959 |
\begin{align*}
y^{\prime }-3 y&=6 \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10960 |
\begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=1-2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10961 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime }&=\tan \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10962 |
\begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10963 |
\begin{align*}
y^{\prime \prime }+100 y&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| 10964 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}+4 x_{2} \\
x_{3}^{\prime }&=x_{1}+3 x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| 10965 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.584 |
|
| 10966 |
\begin{align*}
y^{\prime }&=-\frac {8 x +5}{3 y^{2}+1} \\
y \left (-1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.584 |
|
| 10967 |
\begin{align*}
y_{1}^{\prime }&=y_{1}+y_{2} \\
y_{2}^{\prime }&=y_{1}+y_{2}+{\mathrm e}^{3 x} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| 10968 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+10 y^{\prime } x +20 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| 10969 |
\begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| 10970 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| 10971 |
\begin{align*}
x^{\prime }&=5 x-6 y+1 \\
y^{\prime }&=6 x-7 y+1 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| 10972 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| 10973 |
\begin{align*}
y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10974 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=-2 x_{1}-2 x_{2}-3 x_{3} \\
x_{3}^{\prime }&=2 x_{1}+3 x_{2}+4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10975 | \begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.585 |
|
| 10976 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10977 |
\begin{align*}
2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10978 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-4 x_{2}+3 x_{3} \\
x_{2}^{\prime }&=-9 x_{1}-3 x_{2}-9 x_{3} \\
x_{3}^{\prime }&=4 x_{1}+4 x_{2}+3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10979 |
\begin{align*}
y^{\prime \prime }-4 y&=96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10980 |
\begin{align*}
a y^{2}+x^{3} y^{\prime } y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.585 |
|
| 10981 |
\begin{align*}
4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.585 |
|
| 10982 |
\begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10983 |
\begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10984 |
\begin{align*}
x^{\prime \prime }-4 x&=1-\operatorname {Heaviside}\left (-1+t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10985 |
\begin{align*}
t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.585 |
|
| 10986 |
\begin{align*}
y&=y^{\prime } x -\frac {1}{{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.585 |
|
| 10987 |
\begin{align*}
y+y^{\prime }&=5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10988 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=1-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10989 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\
x_{2}^{\prime }&=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10990 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10991 |
\begin{align*}
y^{\prime \prime } x +\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y&=3 \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✗ |
✗ |
0.585 |
|
| 10992 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 y^{\prime } x&=17 x^{6} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10993 |
\begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }+5 \left (x -1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| 10994 | \begin{align*}
\left (1+y^{\prime }\right )^{2} \left (y-y^{\prime } x \right )&=1 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.585 |
|
| 10995 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| 10996 |
\begin{align*}
8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| 10997 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| 10998 |
\begin{align*}
3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| 10999 |
\begin{align*}
x^{2} \left (x^{2}+8\right ) y^{\prime \prime }+7 x \left (x^{2}+2\right ) y^{\prime }-\left (-9 x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| 11000 |
\begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.586 |
|