| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 10801 |
\begin{align*}
x^{\prime }&=3 x-y+1 \\
y^{\prime }&=x+y+2 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10802 |
\begin{align*}
6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.572 |
|
| 10803 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \\
y \left (0\right ) &= -6 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.572 |
|
| 10804 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+25 y&=-1 \\
y \left (0\right ) &= -{\frac {1}{25}} \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10805 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10806 |
\begin{align*}
x^{\prime }&=4 x-3 y \\
y^{\prime }&=8 x-6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10807 |
\begin{align*}
z^{\prime }+7 y-3 z&=0 \\
7 y^{\prime }+63 y-36 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10808 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=\delta \left (t -3\right ) \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10809 |
\begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10810 |
\begin{align*}
y^{\prime \prime } x +\left (5-x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10811 |
\begin{align*}
y^{\prime }&=x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10812 |
\begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10813 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10814 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=3 y^{\prime } {y^{\prime \prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.573 |
|
| 10815 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10816 |
\begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10817 |
\begin{align*}
4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.573 |
|
| 10818 | \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). | ✗ | ✗ | ✓ | ✗ | 0.573 |
|
| 10819 |
\begin{align*}
y^{\prime \prime }+2 h y^{\prime }+n^{2} y&=0 \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= c \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10820 |
\begin{align*}
y_{1}^{\prime }&=-2 y_{1}-y_{2}+y_{3} \\
y_{2}^{\prime }&=-y_{1}-2 y_{2}-y_{3} \\
y_{3}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10821 |
\begin{align*}
y_{1}^{\prime }&=y_{1}+y_{2}+2 y_{3} \\
y_{2}^{\prime }&=y_{1}+y_{2}+2 y_{3} \\
y_{3}^{\prime }&=2 y_{1}+2 y_{2}+4 y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10822 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1} \\
x_{2}^{\prime }&=1 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10823 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
x_{2}^{\prime }&=3 x_{1}+2 x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10824 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10825 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=3 x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10826 |
\begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=\frac {{\mathrm e}^{-5 x} \ln \left (x \right )}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10827 |
\begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| 10828 |
\begin{align*}
x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.574 |
|
| 10829 |
\begin{align*}
x \left (7+6 x \right ) y+x \left (1-x \right ) y^{\prime }+\left (-x^{2}-x +2\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.574 |
|
| 10830 |
\begin{align*}
y^{\prime \prime }+y \sin \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.574 |
|
| 10831 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.574 |
|
| 10832 |
\begin{align*}
y^{\prime }+y&=0 \\
y \left (3\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.574 |
|
| 10833 |
\begin{align*}
y_{1}^{\prime }&=-6 y_{1}-4 y_{2}-4 y_{3} \\
y_{2}^{\prime }&=2 y_{1}-y_{2}+y_{3} \\
y_{3}^{\prime }&=2 y_{1}+3 y_{2}+y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10834 |
\begin{align*}
3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10835 |
\begin{align*}
x^{\prime }&=3 x-4 y+{\mathrm e}^{t} \\
y^{\prime }&=x-y+{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10836 |
\begin{align*}
8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2}&=27 x +27 y \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.575 |
|
| 10837 | \begin{align*}
\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.575 |
|
| 10838 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10839 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10840 |
\begin{align*}
x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.575 |
|
| 10841 |
\begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10842 |
\begin{align*}
\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10843 |
\begin{align*}
y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10844 |
\begin{align*}
8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2}&=27 y-27 x \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.575 |
|
| 10845 |
\begin{align*}
x^{\prime }&=3 x+y+{\mathrm e}^{t} \\
y^{\prime }&=x+3 y-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10846 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.575 |
|
| 10847 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x +3 y&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10848 |
\begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right )+2 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10849 |
\begin{align*}
y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y&=\sqrt {t} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.575 |
|
| 10850 |
\begin{align*}
y^{\prime \prime }+c y&={\mathrm e}^{i \omega t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| 10851 |
\begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (2 t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10852 |
\begin{align*}
2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10853 |
\begin{align*}
y-x&={y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.576 |
|
| 10854 |
\begin{align*}
\left (b \,x^{2}+a \right ) y+2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10855 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10856 |
\begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10857 | \begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right )^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.576 |
|
| 10858 |
\begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10859 |
\begin{align*}
16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10860 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2}+x +1 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.576 |
|
| 10861 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{2+x}+y&=0 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10862 |
\begin{align*}
x^{\prime }&=2 x-5 y \\
y^{\prime }&=3 x-7 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10863 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10864 |
\begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=3 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| 10865 |
\begin{align*}
y^{\prime }+y^{2}-3 y+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| 10866 |
\begin{align*}
\sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t}&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.577 |
|
| 10867 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}+2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| 10868 |
\begin{align*}
y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| 10869 |
\begin{align*}
2 y y^{\prime \prime }&=4 y^{2}+8 y^{3}+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.577 |
|
| 10870 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| 10871 |
\begin{align*}
a \,x^{2} y+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| 10872 |
\begin{align*}
y^{\prime \prime } x +\left (3 x +5\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| 10873 |
\begin{align*}
y^{\prime }&=\ln \left (1+x^{2}+y^{2}\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.578 |
|
| 10874 |
\begin{align*}
y^{\prime \prime }-y&=\sin \left (2 x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| 10875 |
\begin{align*}
x^{3} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.578 |
|
| 10876 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.578 |
|
| 10877 | \begin{align*}
9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.578 |
|
| 10878 |
\begin{align*}
x^{\prime }&=x+y-z \\
y^{\prime }&=2 y \\
z^{\prime }&=y-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| 10879 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| 10880 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| 10881 |
\begin{align*}
y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -3\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| 10882 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}+5 x_{2}-5 x_{3} \\
x_{2}^{\prime }&=3 x_{1}-x_{2}+3 x_{3} \\
x_{3}^{\prime }&=8 x_{1}-8 x_{2}+10 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10883 |
\begin{align*}
x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10884 |
\begin{align*}
2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10885 |
\begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&={\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10886 |
\begin{align*}
y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }-\frac {y}{x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10887 |
\begin{align*}
x^{3} {y^{\prime }}^{2}&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10888 |
\begin{align*}
2 y+2 \left (1-x \right ) y^{\prime }+\left (-x +2\right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.579 |
|
| 10889 |
\begin{align*}
-\left (2 x +3\right ) y+\left (x^{2}+x +1\right ) y^{\prime }+\left (x^{2}+3 x +4\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.579 |
|
| 10890 |
\begin{align*}
y^{2} {y^{\prime }}^{2}+2 y^{3} y^{\prime \prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.579 |
|
| 10891 |
\begin{align*}
y^{\prime \prime }-y&=\cosh \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10892 |
\begin{align*}
\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10893 |
\begin{align*}
\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10894 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10895 |
\begin{align*}
y^{\prime \prime }+4 y&=\delta \left (t -\pi \right ) \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10896 | \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.579 |
|
| 10897 |
\begin{align*}
y^{\prime \prime }+y \sin \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10898 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.579 |
|
| 10899 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| 10900 |
\begin{align*}
x^{\prime \prime }+4 x&=\cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.579 |
|