| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 10801 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.476 |
|
| 10802 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.476 |
|
| 10803 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.476 |
|
| 10804 |
\begin{align*}
y^{\prime }+y&=\left \{\begin {array}{cc} 1 & 0\le x \le 1 \\ -1 & 1<x \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.477 |
|
| 10805 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| 10806 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{2}-1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| 10807 |
\begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| 10808 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| 10809 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.479 |
|
| 10810 |
\begin{align*}
\left (4-y^{2}\right ) y^{\prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.480 |
|
| 10811 |
\begin{align*}
2 y^{\prime } x +y&=y^{2} \sqrt {x -y^{2} x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.480 |
|
| 10812 |
\begin{align*}
x^{\prime }+x \tanh \left (t \right )&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.480 |
|
| 10813 |
\begin{align*}
y^{\prime }+y&=2 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.480 |
|
| 10814 |
\begin{align*}
y y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.481 |
|
| 10815 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=4 x -8 \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| 10816 |
\begin{align*}
y&=\tan \left (x \right ) y^{\prime }-{y^{\prime }}^{2} \sec \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.481 |
|
| 10817 |
\begin{align*}
4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.482 |
|
| 10818 |
\begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.482 |
|
| 10819 |
\begin{align*}
x^{2}+y+y^{2}-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.483 |
|
| 10820 |
\begin{align*}
y^{\prime }+3 y&=3 y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.483 |
|
| 10821 |
\begin{align*}
2 \left (x +y\right ) y^{\prime }+x^{2}+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.484 |
|
| 10822 |
\begin{align*}
y+y^{\prime }&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.484 |
|
| 10823 |
\begin{align*}
x^{\prime }&=x+2 y+2 t +1 \\
y^{\prime }&=5 x+y+3 t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.484 |
|
| 10824 |
\begin{align*}
{y^{\prime }}^{2}+\left (a y+b x \right ) y^{\prime }+a b x y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.484 |
|
| 10825 |
\begin{align*}
y^{\prime }&=-y^{2}+2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.485 |
|
| 10826 |
\begin{align*}
\left (x -y\right ) y^{\prime \prime }&=f \left (y^{\prime }\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.485 |
|
| 10827 |
\begin{align*}
\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime }&=-2-t \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.485 |
|
| 10828 |
\begin{align*}
y^{\prime }-3 y&=25 \cos \left (4 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.485 |
|
| 10829 |
\begin{align*}
y^{\prime }&=x +y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.485 |
|
| 10830 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=y y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.487 |
|
| 10831 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+3 x_{3}+4 x_{4} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
x_{3}^{\prime }&=4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4} \\
x_{4}^{\prime }&=7 x_{1}+6 x_{2}+5 x_{3}+4 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.487 |
|
| 10832 |
\begin{align*}
\left (y^{3}+1\right ) y^{\prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.487 |
|
| 10833 |
\begin{align*}
y^{\prime } x +y&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.487 |
|
| 10834 |
\begin{align*}
\left (c x +b \right ) y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.488 |
|
| 10835 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (x +5\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.488 |
|
| 10836 |
\begin{align*}
4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.488 |
|
| 10837 |
\begin{align*}
-\left (a^{2}-b \,{\mathrm e}^{x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.490 |
|
| 10838 |
\begin{align*}
x \left (1-2 x \right ) y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+8 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| 10839 |
\begin{align*}
x^{\prime }+5 x&=10 t +2 \\
x \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| 10840 |
\begin{align*}
y^{\prime }&=y x +2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| 10841 |
\begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| 10842 |
\begin{align*}
x^{2} y^{\prime \prime }&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.491 |
|
| 10843 |
\begin{align*}
y^{\prime }+a y&=b \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.492 |
|
| 10844 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.492 |
|
| 10845 |
\begin{align*}
2 y y^{\prime } x +1-2 x^{3}-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.493 |
|
| 10846 |
\begin{align*}
y^{\prime \prime }+y&=2 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.493 |
|
| 10847 |
\begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.493 |
|
| 10848 |
\begin{align*}
y^{\prime }&=-\frac {y}{t}+\cos \left (t^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.494 |
|
| 10849 |
\begin{align*}
y^{\prime }+y^{2}+8 y+7&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.495 |
|
| 10850 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
1.495 |
|
| 10851 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{4}+y&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.495 |
|
| 10852 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.495 |
|
| 10853 |
\begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.496 |
|
| 10854 |
\begin{align*}
\left (b x +a \right ) y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.496 |
|
| 10855 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.496 |
|
| 10856 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{\left (x^{3}+1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| 10857 |
\begin{align*}
\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| 10858 |
\begin{align*}
y^{\prime \prime }+y^{\prime } t +y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.497 |
|
| 10859 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| 10860 |
\begin{align*}
y^{\prime } x +y&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| 10861 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.498 |
|
| 10862 |
\begin{align*}
2 \left (1-x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+\left (x -3-\left (x -1\right )^{2} {\mathrm e}^{x}\right ) y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
1.498 |
|
| 10863 |
\begin{align*}
y^{\prime }-y&=2 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.498 |
|
| 10864 |
\begin{align*}
-\frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.499 |
|
| 10865 |
\begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.499 |
|
| 10866 |
\begin{align*}
x^{\prime \prime }&=3 t \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.500 |
|
| 10867 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=5 \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.500 |
|
| 10868 |
\begin{align*}
9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✓ |
✓ |
✓ |
✗ |
1.500 |
|
| 10869 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.500 |
|
| 10870 |
\begin{align*}
x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.501 |
|
| 10871 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= -11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.502 |
|
| 10872 |
\begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.503 |
|
| 10873 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.503 |
|
| 10874 |
\begin{align*}
y^{\prime }+y^{2}+5 y-6&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| 10875 |
\begin{align*}
\left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.504 |
|
| 10876 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.504 |
|
| 10877 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| 10878 |
\begin{align*}
y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.504 |
|
| 10879 |
\begin{align*}
y^{\prime }&=8 \,{\mathrm e}^{4 t}+t \\
y \left (0\right ) &= 12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.505 |
|
| 10880 |
\begin{align*}
\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.505 |
|
| 10881 |
\begin{align*}
a \,x^{k} y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.505 |
|
| 10882 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }+\lambda \left (1-2 y x +y^{2}\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.505 |
|
| 10883 |
\begin{align*}
x^{2}+1+\left (y^{2}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.505 |
|
| 10884 |
\begin{align*}
y^{\prime }&=1+x +y+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| 10885 |
\begin{align*}
y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| 10886 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (x \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| 10887 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{5}+y&=k \delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| 10888 |
\begin{align*}
y+2 x y^{3}+\left (1+3 y^{2} x^{2}+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.506 |
|
| 10889 |
\begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| 10890 |
\begin{align*}
x^{\prime }&=-7 x+10 y+18 \,{\mathrm e}^{t} \\
y^{\prime }&=-10 x+9 y+37 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| 10891 |
\begin{align*}
y^{\prime } x&=2 y-6 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| 10892 |
\begin{align*}
y^{\prime }&=x^{2}+5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| 10893 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| 10894 |
\begin{align*}
y^{\prime \prime }+y&=\frac {\operatorname {Heaviside}\left (t -4+k \right )-\operatorname {Heaviside}\left (t -4-k \right )}{2 k} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.508 |
|
| 10895 |
\begin{align*}
y^{\prime }+\frac {y \ln \left (x \right )}{x}&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.508 |
|
| 10896 |
\begin{align*}
x^{\prime }&=x \left (1+{\mathrm e}^{t} x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.509 |
|
| 10897 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.510 |
|
| 10898 |
\begin{align*}
\left (b +c \,{\mathrm e}^{x}\right ) y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.510 |
|
| 10899 |
\begin{align*}
2 y^{\prime \prime } x +y^{\prime }-y&=x +1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.510 |
|
| 10900 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.510 |
|