| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 10701 |
\begin{align*}
x^{\prime \prime }+10 x^{\prime }+25 x&=2^{t}+t \,{\mathrm e}^{-5 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| 10702 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \\
y \left (\infty \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.565 |
|
| 10703 |
\begin{align*}
y^{\prime \prime }+y&=3 \sin \left (2 t \right )+\cos \left (2 t \right ) t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| 10704 |
\begin{align*}
y^{\prime \prime }-y^{\prime }&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| 10705 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| 10706 |
\begin{align*}
x^{\prime }+x+2 y&=1 \\
2 x+y^{\prime }-2 y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| 10707 |
\begin{align*}
y^{\prime \prime }+4 y&=\delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| 10708 |
\begin{align*}
y^{\prime }&=\sqrt {x} \\
y \left (4\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10709 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=3 x_{1}+x_{2}+5 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10710 |
\begin{align*}
x_{1}^{\prime }&=x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-x_{2}-5 x_{3} \\
x_{3}^{\prime }&=4 x_{1}+x_{2}-2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10711 |
\begin{align*}
x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10712 |
\begin{align*}
y_{1}^{\prime }&=-11 y_{1}+4 y_{2} \\
y_{2}^{\prime }&=-26 y_{1}+9 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10713 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{3} \\
x_{2}^{\prime }&=x_{2}-x_{3} \\
x_{3}^{\prime }&=-2 x_{1}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10714 |
\begin{align*}
x_{1}^{\prime }&=-6 x_{1}+x_{2}+1 \\
x_{2}^{\prime }&=6 x_{1}-5 x_{2}+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10715 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+35 \,{\mathrm e}^{t} t^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10716 |
\begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.566 |
|
| 10717 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10718 | \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.566 |
|
| 10719 |
\begin{align*}
y^{\prime }-2 y&=-10 \\
y \left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10720 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-4 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-4 x_{1}+2 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=2 x_{1}-2 x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10721 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| 10722 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.566 |
|
| 10723 |
\begin{align*}
y^{\prime \prime }-y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.567 |
|
| 10724 |
\begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.567 |
|
| 10725 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.567 |
|
| 10726 |
\begin{align*}
y^{\prime }+y&=3 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.567 |
|
| 10727 |
\begin{align*}
x^{\prime \prime }+4 x&=\delta \left (t \right )+\delta \left (t -\pi \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10728 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=\frac {9 x_{1}}{5}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10729 |
\begin{align*}
-y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.568 |
|
| 10730 |
\begin{align*}
1+{y^{\prime }}^{2}&=\frac {1}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10731 |
\begin{align*}
y^{\prime }&=\frac {1}{y-3} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10732 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10733 |
\begin{align*}
{y^{\prime \prime }}^{2}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10734 |
\begin{align*}
2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.568 |
|
| 10735 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10736 |
\begin{align*}
3 v^{\prime }+2 v+w^{\prime }-6 w&=5 \,{\mathrm e}^{x} \\
4 v^{\prime }+2 v+w^{\prime }-8 w&=5 \,{\mathrm e}^{x}+2 x -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| 10737 | \begin{align*}
y^{\prime }+y^{2}+8 y+7&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.569 |
|
| 10738 |
\begin{align*}
2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10739 |
\begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10740 |
\begin{align*}
4 y+y^{\prime \prime }&=8 \sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10741 |
\begin{align*}
y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (y^{2}+x^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10742 |
\begin{align*}
y&=y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10743 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-2 x_{2}+2 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= -2 \\
x_{3} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10744 |
\begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }&=b c \,x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10745 |
\begin{align*}
-y-\left (-x^{2}+1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.569 |
|
| 10746 |
\begin{align*}
\left (-x^{2}+1\right ) y-x \left (-x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.569 |
|
| 10747 |
\begin{align*}
y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10748 |
\begin{align*}
2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10749 |
\begin{align*}
\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 \left (x +1\right ) x y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10750 |
\begin{align*}
y^{\prime \prime }-y&=\cos \left (x \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10751 |
\begin{align*}
x^{\prime }&=5 x+9 y+2 \\
y^{\prime }&=-x+11 y+6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10752 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{4} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.569 |
|
| 10753 |
\begin{align*}
x^{3} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.569 |
|
| 10754 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+\frac {8}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10755 |
\begin{align*}
y_{1}^{\prime }&=y_{1}-2 y_{2} \\
y_{2}^{\prime }&=y_{1}+3 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10756 | \begin{align*}
y^{\prime } x&=\arcsin \left (x^{2}\right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.569 |
|
| 10757 |
\begin{align*}
4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}}&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10758 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10759 |
\begin{align*}
4 x^{2} y^{\prime \prime }+8 y^{\prime } x +\left (1-4 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10760 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=\tan \left (2 t \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10761 |
\begin{align*}
x^{\prime }&=x+5 y \\
y^{\prime }&=-x-3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10762 |
\begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10763 |
\begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{-x} \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10764 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| 10765 |
\begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10766 |
\begin{align*}
4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10767 |
\begin{align*}
f^{\prime \prime }+8 f^{\prime }+12 f&=12 \,{\mathrm e}^{-4 t} \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10768 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10769 |
\begin{align*}
y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10770 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10771 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10772 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime } x -{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10773 |
\begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10774 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{-x} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.570 |
|
| 10775 | \begin{align*}
y&=2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \\
\end{align*} | ✓ | ✓ | ✗ | ✓ | 0.570 |
|
| 10776 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+k x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10777 |
\begin{align*}
s^{\prime }&=9 \sqrt {u} \\
s \left (4\right ) &= 16 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10778 |
\begin{align*}
4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10779 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10780 |
\begin{align*}
t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+4 t y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| 10781 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+17 y&=\frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.571 |
|
| 10782 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \tan \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| 10783 |
\begin{align*}
y^{\prime \prime } x +\left (2 x -1\right ) y^{\prime }&=-4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.571 |
|
| 10784 |
\begin{align*}
x^{\prime }+2 y^{\prime }-2 x+2 y&=3 \,{\mathrm e}^{t} \\
3 x^{\prime }+y^{\prime }+2 x+y&=4 \,{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| 10785 |
\begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=-2 x_{2} \\
x_{3}^{\prime }&=x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| 10786 |
\begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.571 |
|
| 10787 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=3 \delta \left (-1+t \right ) \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| 10788 |
\begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right )-2 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| 10789 |
\begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.572 |
|
| 10790 |
\begin{align*}
x^{\prime }&=x+9 y \\
y^{\prime }&=-2 x-5 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 3 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10791 |
\begin{align*}
\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y&=0 \\
\end{align*} Series expansion around \(z=0\). |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10792 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10793 |
\begin{align*}
y^{\prime \prime }-\frac {3 y^{\prime }}{x \left (1-x \right )}+\frac {2 y}{x \left (1-x \right )}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10794 | \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.572 |
|
| 10795 |
\begin{align*}
y^{\prime \prime }+9 y&=8 \cos \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10796 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }-3 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10797 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10798 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10799 |
\begin{align*}
2 y^{\prime \prime } x +5 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| 10800 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.572 |
|