2.3.89 Problems 8801 to 8900

Table 2.709: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8801

5641

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

0.443

8802

8193

\begin{align*} {y^{\prime }}^{2}&=4 y \\ \end{align*}

0.443

8803

8336

\begin{align*} y^{\prime }&=y^{2}-y-6 \\ \end{align*}

0.443

8804

8761

\begin{align*} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

0.443

8805

9354

\begin{align*} y^{\prime }+y&=0 \\ \end{align*}

0.443

8806

9642

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.443

8807

12998

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y^{\prime } y\right )&=0 \\ \end{align*}

0.443

8808

20080

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

0.443

8809

22061

\begin{align*} y^{\prime }-5 y&=0 \\ \end{align*}

0.443

8810

24735

\begin{align*} y^{\prime \prime }-y&=\frac {2}{\sqrt {1-{\mathrm e}^{-2 x}}} \\ \end{align*}

0.443

8811

25140

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

0.443

8812

25283

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

0.443

8813

495

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (1-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.444

8814

1392

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.444

8815

1874

\begin{align*} \left (3 x^{2}-6 x +5\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+12 y&=0 \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}
Series expansion around \(x=1\).

0.444

8816

2601

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} \\ \end{align*}

0.444

8817

4046

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.444

8818

5439

\begin{align*} 3 {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

0.444

8819

5574

\begin{align*} y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2}&=0 \\ \end{align*}

0.444

8820

5723

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

0.444

8821

5805

\begin{align*} b^{2} y+2 a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.444

8822

6823

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\ \end{align*}

0.444

8823

7303

\begin{align*} y^{\prime \prime }-y&=\sinh \left (x \right ) \\ \end{align*}

0.444

8824

9045

\begin{align*} y_{1}^{\prime }&=y_{2} \\ y_{2}^{\prime }&=6 y_{1}+y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

0.444

8825

9187

\begin{align*} \left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.444

8826

9372

\begin{align*} y^{\prime \prime }+2 y^{\prime } x -y&=x \\ \end{align*}
Series expansion around \(x=0\).

0.444

8827

10061

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=y \\ z^{\prime }&=z \\ \end{align*}

0.444

8828

15986

\begin{align*} x^{\prime }&=-4 x-2 y \\ y^{\prime }&=-x-3 y \\ \end{align*}

0.444

8829

16104

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=4+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.444

8830

18121

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{2} y^{\prime } \\ \end{align*}

0.444

8831

18702

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=x-2 y \\ \end{align*}

0.444

8832

22883

\begin{align*} u^{\prime }&=2 v-1 \\ v^{\prime }&=1+2 u \\ \end{align*}

0.444

8833

25704

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.444

8834

639

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+4 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}+4 x_{3} \\ \end{align*}

0.445

8835

973

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

0.445

8836

1871

\begin{align*} \left (3 x^{2}+6 x +5\right ) y^{\prime \prime }+9 \left (x +1\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

0.445

8837

2391

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

0.445

8838

2696

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t}+3 \delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

0.445

8839

3178

\begin{align*} y^{\prime \prime }+3 y^{\prime }-2 y&=\sin \left (2 x \right ) \\ \end{align*}

0.445

8840

4047

\begin{align*} y^{\prime \prime } x +y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.445

8841

8994

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.445

8842

10339

\begin{align*} t y^{\prime }+y&=\sin \left (t \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.445

8843

12976

\begin{align*} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

0.445

8844

16051

\begin{align*} x^{\prime }&=z-y \\ y^{\prime }&=z-x \\ z^{\prime }&=z \\ \end{align*}

0.445

8845

16441

\begin{align*} \left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{3} \\ \end{align*}

0.445

8846

17402

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.445

8847

17426

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=2 \,{\mathrm e}^{3 t} \\ \end{align*}

0.445

8848

17755

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=3 \,{\mathrm e}^{-2 t} \\ \end{align*}

0.445

8849

18160

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 x} \cos \left (2 x \right ) \\ \end{align*}

0.445

8850

18729

\begin{align*} y^{\prime \prime }-y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.445

8851

18868

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

0.445

8852

20187

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\ \end{align*}

0.445

8853

22750

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\ \end{align*}

0.445

8854

22868

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.445

8855

23090

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=x \left (12-{\mathrm e}^{-4 x}\right ) \\ \end{align*}

0.445

8856

25117

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&={\mathrm e}^{-3 t} \\ \end{align*}

0.445

8857

25166

\begin{align*} y_{1}^{\prime }-6 y_{1}&=-4 y_{2} \\ y_{2}^{\prime }&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

0.445

8858

260

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=2 x \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

0.446

8859

2428

\begin{align*} y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{t}&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(t=0\).

0.446

8860

5728

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (2 x \right ) \\ \end{align*}

0.446

8861

9375

\begin{align*} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.446

8862

12294

\begin{align*} y^{\prime \prime }-c \,x^{a} y&=0 \\ \end{align*}

0.446

8863

17692

\begin{align*} \left (2 x^{2}+2\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.446

8864

20101

\begin{align*} \left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

0.446

8865

22866

\begin{align*} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y&=4 x^{2} \\ \end{align*}
Series expansion around \(x=0\).

0.446

8866

24834

\begin{align*} 4 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

0.446

8867

25399

\begin{align*} y^{\prime }&=2-y \\ \end{align*}

0.446

8868

25434

\begin{align*} y^{\prime }-a \left (t \right ) y&=\delta \left (t \right ) \\ \end{align*}

0.446

8869

617

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 10 \\ x_{2} \left (0\right ) &= 12 \\ x_{3} \left (0\right ) &= -1 \\ \end{align*}

0.447

8870

885

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

0.447

8871

915

\begin{align*} 2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\ \end{align*}

0.447

8872

1894

\begin{align*} \left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.447

8873

2240

\begin{align*} y_{1}^{\prime }&=-\frac {4 y_{1}}{5}+\frac {3 y_{2}}{5} \\ y_{2}^{\prime }&=-\frac {2 y_{1}}{5}-\frac {11 y_{2}}{5} \\ \end{align*}

0.447

8874

2717

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\tan \left (t \right ) \\ \end{align*}

0.447

8875

3159

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\ \end{align*}

0.447

8876

3427

\begin{align*} y^{\prime }&={\mathrm e}^{2 t} t \\ y \left (1\right ) &= 5 \\ \end{align*}

0.447

8877

3744

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \\ \end{align*}

0.447

8878

6036

\begin{align*} -\left (3 x +2\right ) y+x \left (-x +2\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.447

8879

6463

\begin{align*} -y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.447

8880

6613

\begin{align*} 4 y-2 y^{\prime }+y^{\prime \prime \prime }&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

0.447

8881

7101

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\ \end{align*}

0.447

8882

7667

\begin{align*} x^{\prime \prime }+42 x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.447

8883

7888

\begin{align*} x +y+1-\left (3-x +y\right ) y^{\prime }&=0 \\ \end{align*}

0.447

8884

8133

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.447

8885

8946

\begin{align*} y^{\prime \prime }+i y^{\prime }+2 y&=2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \\ \end{align*}

0.447

8886

9565

\begin{align*} 16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y&=0 \\ \end{align*}

0.447

8887

10138

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

0.447

8888

16042

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-2 y \\ z^{\prime }&=-z \\ \end{align*}

0.447

8889

16752

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\ \end{align*}

0.447

8890

16941

\begin{align*} x^{\prime }&=3 x+2 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= a_{1} \\ y \left (0\right ) &= a_{2} \\ \end{align*}

0.447

8891

18022

\begin{align*} y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right )&=0 \\ \end{align*}

0.447

8892

18204

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\ \end{align*}

0.447

8893

18399

\begin{align*} y^{\prime \prime }-4 y&=\cos \left (\pi x \right ) \\ \end{align*}

0.447

8894

19393

\begin{align*} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime }&=2 y x -{\mathrm e}^{y}-x \\ \end{align*}

0.447

8895

22175

\begin{align*} \left (x -2\right ) y^{\prime \prime }+3 \left (x^{2}-3 x +2\right ) y^{\prime }+\left (x -2\right )^{2} x y&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.447

8896

23595

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-3 x+6 y \\ \end{align*}

0.447

8897

24757

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sec \left ({\mathrm e}^{-x}\right )^{2} \\ \end{align*}

0.447

8898

24823

\begin{align*} {y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\ \end{align*}

0.447

8899

3429

\begin{align*} y^{\prime }&=8 \,{\mathrm e}^{4 t}+t \\ y \left (0\right ) &= 12 \\ \end{align*}

0.448

8900

4042

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (1-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.448