| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 8801 |
\begin{align*}
2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.443 |
|
| 8802 |
\begin{align*}
{y^{\prime }}^{2}&=4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8803 |
\begin{align*}
y^{\prime }&=y^{2}-y-6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8804 |
\begin{align*}
y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.443 |
|
| 8805 |
\begin{align*}
y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8806 |
\begin{align*}
y^{\prime \prime }+y&=\delta \left (t -2 \pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8807 |
\begin{align*}
\left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y^{\prime } y\right )&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.443 |
|
| 8808 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8809 |
\begin{align*}
y^{\prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8810 |
\begin{align*}
y^{\prime \prime }-y&=\frac {2}{\sqrt {1-{\mathrm e}^{-2 x}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8811 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8812 |
\begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8813 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (1-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.444 |
|
| 8814 |
\begin{align*}
\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8815 |
\begin{align*}
\left (3 x^{2}-6 x +5\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+12 y&=0 \\
y \left (1\right ) &= -1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8816 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8817 |
\begin{align*}
4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8818 | \begin{align*}
3 {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.444 |
|
| 8819 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.444 |
|
| 8820 |
\begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8821 |
\begin{align*}
b^{2} y+2 a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8822 |
\begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8823 |
\begin{align*}
y^{\prime \prime }-y&=\sinh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8824 |
\begin{align*}
y_{1}^{\prime }&=y_{2} \\
y_{2}^{\prime }&=6 y_{1}+y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8825 |
\begin{align*}
\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8826 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x -y&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.444 |
|
| 8827 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=y \\
z^{\prime }&=z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8828 |
\begin{align*}
x^{\prime }&=-4 x-2 y \\
y^{\prime }&=-x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8829 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=4+{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8830 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.444 |
|
| 8831 |
\begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8832 |
\begin{align*}
u^{\prime }&=2 v-1 \\
v^{\prime }&=1+2 u \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8833 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| 8834 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+4 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2}+4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8835 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8836 |
\begin{align*}
\left (3 x^{2}+6 x +5\right ) y^{\prime \prime }+9 \left (x +1\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8837 | \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.445 |
|
| 8838 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t}+3 \delta \left (t -3\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8839 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8840 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8841 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8842 |
\begin{align*}
t y^{\prime }+y&=\sin \left (t \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✗ |
✓ |
✓ |
0.445 |
|
| 8843 |
\begin{align*}
f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.445 |
|
| 8844 |
\begin{align*}
x^{\prime }&=z-y \\
y^{\prime }&=z-x \\
z^{\prime }&=z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8845 |
\begin{align*}
\left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.445 |
|
| 8846 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8847 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=2 \,{\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8848 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=3 \,{\mathrm e}^{-2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8849 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 x} \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8850 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8851 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.445 |
|
| 8852 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8853 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8854 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8855 |
\begin{align*}
16 y+8 y^{\prime }+y^{\prime \prime }&=x \left (12-{\mathrm e}^{-4 x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8856 | \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&={\mathrm e}^{-3 t} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.445 |
|
| 8857 |
\begin{align*}
y_{1}^{\prime }-6 y_{1}&=-4 y_{2} \\
y_{2}^{\prime }&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| 8858 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=2 x \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8859 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{t}&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8860 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8861 |
\begin{align*}
y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8862 |
\begin{align*}
y^{\prime \prime }-c \,x^{a} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.446 |
|
| 8863 |
\begin{align*}
\left (2 x^{2}+2\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8864 |
\begin{align*}
\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.446 |
|
| 8865 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y&=4 x^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.446 |
|
| 8866 |
\begin{align*}
4 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8867 |
\begin{align*}
y^{\prime }&=2-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8868 |
\begin{align*}
y^{\prime }-a \left (t \right ) y&=\delta \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| 8869 |
\begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 10 \\
x_{2} \left (0\right ) &= 12 \\
x_{3} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8870 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8871 |
\begin{align*}
2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8872 |
\begin{align*}
\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8873 |
\begin{align*}
y_{1}^{\prime }&=-\frac {4 y_{1}}{5}+\frac {3 y_{2}}{5} \\
y_{2}^{\prime }&=-\frac {2 y_{1}}{5}-\frac {11 y_{2}}{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8874 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\tan \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8875 | \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.447 |
|
| 8876 |
\begin{align*}
y^{\prime }&={\mathrm e}^{2 t} t \\
y \left (1\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8877 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8878 |
\begin{align*}
-\left (3 x +2\right ) y+x \left (-x +2\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.447 |
|
| 8879 |
\begin{align*}
-y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.447 |
|
| 8880 |
\begin{align*}
4 y-2 y^{\prime }+y^{\prime \prime \prime }&={\mathrm e}^{x} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8881 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8882 |
\begin{align*}
x^{\prime \prime }+42 x^{\prime }+x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8883 |
\begin{align*}
x +y+1-\left (3-x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8884 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.447 |
|
| 8885 |
\begin{align*}
y^{\prime \prime }+i y^{\prime }+2 y&=2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8886 |
\begin{align*}
16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8887 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8888 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=-2 y \\
z^{\prime }&=-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8889 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8890 |
\begin{align*}
x^{\prime }&=3 x+2 y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= a_{1} \\
y \left (0\right ) &= a_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8891 |
\begin{align*}
y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8892 |
\begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8893 |
\begin{align*}
y^{\prime \prime }-4 y&=\cos \left (\pi x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8894 |
\begin{align*}
\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime }&=2 y x -{\mathrm e}^{y}-x \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.447 |
|
| 8895 | \begin{align*}
\left (x -2\right ) y^{\prime \prime }+3 \left (x^{2}-3 x +2\right ) y^{\prime }+\left (x -2\right )^{2} x y&=0 \\
\end{align*} Series expansion around \(x=2\). | ✓ | ✓ | ✓ | ✓ | 0.447 |
|
| 8896 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=-3 x+6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8897 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sec \left ({\mathrm e}^{-x}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| 8898 |
\begin{align*}
{y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.447 |
|
| 8899 |
\begin{align*}
y^{\prime }&=8 \,{\mathrm e}^{4 t}+t \\
y \left (0\right ) &= 12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| 8900 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (1-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.448 |
|