| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 6301 |
\begin{align*}
\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 y^{\prime } x +4 y&=\frac {2}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.325 |
|
| 6302 |
\begin{align*}
y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.325 |
|
| 6303 |
\begin{align*}
4 y+y^{\prime \prime }&=8 \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| 6304 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6305 |
\begin{align*}
x^{\prime \prime \prime \prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
x^{\prime \prime \prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6306 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+9 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6307 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6308 |
\begin{align*}
y+2 y^{\prime }+4 y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6309 |
\begin{align*}
f \left (x \right )^{2} y^{\prime \prime }&=-24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.326 |
|
| 6310 |
\begin{align*}
\left (y^{2} x^{2}+y x \right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6311 |
\begin{align*}
y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6312 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (2+x \right ) y&=\left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.326 |
|
| 6313 |
\begin{align*}
y^{\prime \prime }+y&=x^{2}+x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6314 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.326 |
|
| 6315 |
\begin{align*}
{y^{\prime }}^{2}+\left (x -2\right ) y^{\prime }-y+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6316 |
\begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6317 |
\begin{align*}
x^{\prime \prime }+x&=\delta \left (t -2\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6318 | \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=3 x-4 y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.326 |
|
| 6319 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6320 |
\begin{align*}
y^{\prime \prime }+9 y&=9 x^{4}-9 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6321 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=10 x^{2}+4 x +8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6322 |
\begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=98 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6323 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{2}+1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6324 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -5 \\
x_{2} \left (0\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6325 |
\begin{align*}
4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6326 |
\begin{align*}
\left (1-y^{2}\right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.326 |
|
| 6327 |
\begin{align*}
x^{2} y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }-2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6328 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=-x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6329 |
\begin{align*}
y^{\prime \prime }+y&=12 \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6330 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6331 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=16 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6332 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| 6333 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+5 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6334 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6335 |
\begin{align*}
y^{\prime \prime }+t y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6336 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=4 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6337 | \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.327 |
|
| 6338 |
\begin{align*}
-\left (1-x \right ) y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.327 |
|
| 6339 |
\begin{align*}
y^{b}+x^{a} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.327 |
|
| 6340 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6341 |
\begin{align*}
y^{\prime \prime }-y x&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.327 |
|
| 6342 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.327 |
|
| 6343 |
\begin{align*}
\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.327 |
|
| 6344 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6345 |
\begin{align*}
-y+y^{\prime }&=10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6346 |
\begin{align*}
\left (x^{2}-2 y x \right ) {y^{\prime }}^{2}-\left (3 x^{2}+2 y\right ) \left (x -2 y\right ) y^{\prime }+6 x y \left (x -2 y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| 6347 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6348 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6349 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=8 x_{1}-4 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6350 |
\begin{align*}
\left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6351 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=2 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6352 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| 6353 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y&=\left (-x^{2}+6\right ) {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| 6354 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (1\right ) &= {\mathrm e}^{2} \\
y^{\prime }\left (1\right ) &= 3 \,{\mathrm e}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6355 |
\begin{align*}
t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| 6356 |
\begin{align*}
4 y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| 6357 | \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=\frac {y y^{\prime }}{\sqrt {x^{2}+1}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.328 |
|
| 6358 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6359 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=6 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6360 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=\delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6361 |
\begin{align*}
x^{\prime }&=-\frac {x}{4}-\frac {3 y}{4} \\
y^{\prime }&=\frac {x}{2}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6362 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6363 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| 6364 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=x^{3}-x +3 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| 6365 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{t} {\mathrm e}^{i t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| 6366 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+3 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6367 |
\begin{align*}
\left (-x^{2}+4\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6368 |
\begin{align*}
y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6369 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \left (x +1\right ) \\
y \left (-1\right ) &= -6 \\
y^{\prime }\left (-1\right ) &= {\frac {43}{6}} \\
y^{\prime \prime }\left (-1\right ) &= -{\frac {5}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6370 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6371 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-3 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6372 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x -4 y&=6 \,{\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6373 |
\begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6374 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6375 |
\begin{align*}
3 {y^{\prime }}^{5}-y^{\prime } y+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6376 | \begin{align*}
\frac {\left (a +b \right ) y}{x^{2}}+y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.329 |
|
| 6377 |
\begin{align*}
\left (c \,x^{3}+b \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6378 |
\begin{align*}
y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime }&=2 y^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.329 |
|
| 6379 |
\begin{align*}
y^{\prime \prime \prime }-y&=5 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6380 |
\begin{align*}
y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6381 |
\begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6382 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +8 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6383 |
\begin{align*}
2 x^{2} y^{\prime }&=y^{3}+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6384 |
\begin{align*}
t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6385 |
\begin{align*}
x^{2} y^{\prime \prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6386 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6387 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6388 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6389 |
\begin{align*}
x^{\prime }&=3 x \\
y^{\prime }&=-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6390 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6391 |
\begin{align*}
y^{\prime }-\tan \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6392 |
\begin{align*}
y^{\prime }+y \,{\mathrm e}^{2 x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6393 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6394 |
\begin{align*}
4 x^{2} y^{\prime \prime }+17 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6395 |
\begin{align*}
\sin \left (y^{\prime }\right )&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6396 | \begin{align*}
y^{\prime \prime }+y&=\operatorname {Heaviside}\left (t -3 \pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.329 |
|
| 6397 |
\begin{align*}
x^{\prime \prime \prime \prime }+x^{\prime \prime }&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
x^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6398 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6399 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+14 y&=42 \,{\mathrm e}^{x}-7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| 6400 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=20-3 x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.329 |
|