2.3.6 Problem 6
Internal
problem
ID
[10337]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
6
Date
solved
:
Thursday, November 27, 2025 at 10:34:36 AM
CAS
classification
:
[_separable]
\begin{align*}
y^{\prime } t +y&=0 \\
\end{align*}
Using Laplace transform method.
Since no initial condition is explicitly given, then let
\begin{align*} y \left (0\right ) = c_1 \end{align*}
We will now apply Laplace transform to each term in the ode. Since this is time varying, the
following Laplace transform property will be used
\begin{align*} t^{n} f \left (t \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}
Where in the above \(F(s)\) is the laplace transform of \(f \left (t \right )\) . Applying the above property to each term of the
ode gives
\begin{align*} y &\xrightarrow {\mathscr {L}} Y \left (s \right )\\ y^{\prime } t &\xrightarrow {\mathscr {L}} -Y \left (s \right )-s \left (\frac {d}{d s}Y \left (s \right )\right ) \end{align*}
Collecting all the terms above, the ode in Laplace domain becomes
\[
-s Y^{\prime } = 0
\]
The above ode in Y(s) is now
solved.
Solve Since the ode has the form \(Y^{\prime }=f(s)\) , then we only need to integrate \(f(s)\) .
\begin{align*} \int {dY} &= \int {0\, ds} + c_2 \\ Y &= c_2 \end{align*}
Applying inverse Laplace transform on the above gives.
\begin{align*} y = c_2 \delta \left (t \right )\tag {1} \end{align*}
Substituting initial conditions \(y \left (0\right ) = c_1\) and \(y^{\prime }\left (0\right ) = c_1\) into the above solution Gives
\[
c_1 = c_2 \delta \left (0\right )
\]
Solving for the constant
\(c_2\) from
the above equation gives
\begin{align*} c_2 = \frac {c_1}{\delta \left (0\right )} \end{align*}
Substituting the above back into the solution (1) gives
\[
y = \frac {c_1 \delta \left (t \right )}{\delta \left (0\right )}
\]
Figure 2.83: Slope field \(y^{\prime } t +y = 0\)
✓ Maple. Time used: 0.056 (sec). Leaf size: 8
ode := t * diff ( y ( t ), t )+ y ( t ) = 0;
dsolve ( ode , y ( t ), method = ' laplace ' );
\[
y = c_1 \delta \left (t \right )
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & t \left (\frac {d}{d t}y \left (t \right )\right )+y \left (t \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}y \left (t \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}=-\frac {1}{t} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}d t =\int -\frac {1}{t}d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y \left (t \right )\right )=-\ln \left (t \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (t \right ) \\ {} & {} & y \left (t \right )=\frac {{\mathrm e}^{\mathit {C1}}}{t} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & y \left (t \right )=\frac {\mathit {C1}}{t} \end {array} \]
✓ Mathematica. Time used: 0.015 (sec). Leaf size: 16
ode = t * D [ y [ t ], t ]+ y [ t ]==0;
ic ={};
DSolve [{ ode , ic }, y [ t ], t , IncludeSingularSolutions -> True ]
\begin{align*} y(t)&\to \frac {c_1}{t}\\ y(t)&\to 0 \end{align*}
✓ Sympy. Time used: 0.063 (sec). Leaf size: 5
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(t*Derivative(y(t), t) + y(t),0)
ics = {}
dsolve ( ode , func = y ( t ), ics = ics )
\[
y{\left (t \right )} = \frac {C_{1}}{t}
\]