2.3.65 Problems 6401 to 6500

Table 2.661: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

6401

24838

\begin{align*} 9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\ \end{align*}

0.329

6402

624

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2} \\ x_{2}^{\prime }&=6 x_{1}-x_{2} \\ \end{align*}

0.330

6403

1067

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.330

6404

1318

\begin{align*} y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

0.330

6405

1333

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

0.330

6406

1459

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.330

6407

2801

\begin{align*} x^{\prime }&=x-4 y \\ y^{\prime }&=4 x-7 y \\ \end{align*}

0.330

6408

5786

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\ \end{align*}

0.330

6409

5957

\begin{align*} a y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.330

6410

7770

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

0.330

6411

8396

\begin{align*} y^{\prime }&=\frac {1}{1+\sin \left (x \right )} \\ \end{align*}

0.330

6412

8559

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.330

6413

15303

\begin{align*} x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2}&=0 \\ \end{align*}

0.330

6414

16074

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\ \end{align*}

0.330

6415

18648

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=3 x-4 y \\ \end{align*}

0.330

6416

22129

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\ \end{align*}

0.330

6417

22729

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

0.330

6418

22730

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 x}+x \\ \end{align*}

0.330

6419

22763

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=x \ln \left (x \right ) \\ \end{align*}

0.330

6420

23445

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.330

6421

25595

\begin{align*} y^{\prime \prime }+3 y&=\cos \left (t \right ) \\ \end{align*}

0.330

6422

1360

\begin{align*} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5}&=\cos \left (t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.331

6423

1862

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.331

6424

2783

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

0.331

6425

5808

\begin{align*} \left (a^{2}+b^{2}\right )^{2} y-4 a b y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.331

6426

7656

\begin{align*} y^{\prime }-y x&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

0.331

6427

7756

\begin{align*} y^{\prime \prime }-4 y&=10 \,{\mathrm e}^{3 x} \\ \end{align*}

0.331

6428

8044

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y&=0 \\ \end{align*}

0.331

6429

15513

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

0.331

6430

18693

\begin{align*} x^{\prime }&=\frac {5 x}{4}+\frac {3 y}{4} \\ y^{\prime }&=-\frac {3 x}{4}-\frac {y}{4} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.331

6431

20179

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y&=0 \\ \end{align*}

0.331

6432

22018

\begin{align*} y^{\prime }&=\frac {2 y x}{y^{2}-x^{2}} \\ \end{align*}

0.331

6433

24048

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=x^{2}-4 \cos \left (3 x \right ) \\ \end{align*}
Using Laplace transform method.

0.331

6434

24570

\begin{align*} 2 y^{\prime \prime }-5 y^{\prime }-3 y&=-9 x^{2}-1 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.331

6435

25229

\begin{align*} t^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

0.331

6436

368

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

0.332

6437

869

\begin{align*} y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\ \end{align*}

0.332

6438

870

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=3 x +4 \\ \end{align*}

0.332

6439

1263

\begin{align*} y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

0.332

6440

1450

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

0.332

6441

2622

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

0.332

6442

3403

\begin{align*} y^{\prime }&=2 \,{\mathrm e}^{3 x} \\ \end{align*}

0.332

6443

3833

\begin{align*} x_{1}^{\prime }&=-x_{1}+2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\ \end{align*}

0.332

6444

4649

\begin{align*} y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )+y f^{\prime }\left (x \right ) \\ \end{align*}

0.332

6445

6324

\begin{align*} y^{\prime \prime }&=\operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

0.332

6446

6531

\begin{align*} 4 f \left (x \right ) y y^{\prime \prime }&=4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \\ \end{align*}

0.332

6447

7597

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&=0 \\ y \left (-1\right ) &= 3 \\ y^{\prime }\left (-1\right ) &= 9 \\ \end{align*}

0.332

6448

8204

\begin{align*} y^{\prime }&=5-y \\ \end{align*}

0.332

6449

8807

\begin{align*} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t}&=0 \\ \end{align*}

0.332

6450

8845

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

0.332

6451

8851

\begin{align*} x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.332

6452

8901

\begin{align*} y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.332

6453

10402

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

0.332

6454

10569

\begin{align*} 9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y&=0 \\ \end{align*}

0.332

6455

14875

\begin{align*} T^{\prime }&={\mathrm e}^{-t} \sin \left (2 t \right ) \\ \end{align*}

0.332

6456

15514

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

0.332

6457

16429

\begin{align*} y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

0.332

6458

16937

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=2 x \\ \end{align*}

0.332

6459

19020

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{2}-3 x_{2} \\ \end{align*}

0.332

6460

19057

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 7 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.332

6461

20148

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.332

6462

22689

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+15 x \\ \end{align*}

0.332

6463

24018

\begin{align*} y^{\prime \prime \prime }+3 k y^{\prime \prime }+3 k^{2} y^{\prime }+k^{3} y&={\mathrm e}^{-k x} f^{\prime \prime \prime }\left (x \right ) \\ \end{align*}

0.332

6464

24560

\begin{align*} 4 y+y^{\prime \prime }&=4 \sin \left (x \right )^{2} \\ \end{align*}

0.332

6465

24728

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

0.332

6466

24810

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

0.332

6467

25329

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.332

6468

627

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\ \end{align*}

0.333

6469

893

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\ \end{align*}

0.333

6470

3099

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\ \end{align*}

0.333

6471

3715

\begin{align*} y^{\prime \prime }+y&=6 \,{\mathrm e}^{x} \\ \end{align*}

0.333

6472

3828

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

0.333

6473

6104

\begin{align*} 6 y+\left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

0.333

6474

7652

\begin{align*} y^{\prime }-{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.333

6475

8561

\begin{align*} y x -x^{2} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.333

6476

9843

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.333

6477

10222

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.333

6478

10446

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y&=0 \\ \end{align*}

0.333

6479

14572

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=4 x^{2} \\ \end{align*}

0.333

6480

14928

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

0.333

6481

14932

\begin{align*} x^{\prime \prime }-4 x&=t^{2} \\ \end{align*}

0.333

6482

14957

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{x} \\ \end{align*}

0.333

6483

16114

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\ \end{align*}

0.333

6484

18383

\begin{align*} y^{\prime \prime }&=x^{2} y-y^{\prime } \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.333

6485

18656

\begin{align*} x^{\prime }&=5 x-y \\ y^{\prime }&=3 x+y \\ \end{align*}

0.333

6486

21206

\begin{align*} x^{\prime }&=a x+y \\ y^{\prime }&=a y \\ \end{align*}

0.333

6487

22236

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.333

6488

22713

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} x^{2} \\ \end{align*}

0.333

6489

22740

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

0.333

6490

22891

\begin{align*} x^{\prime }-2 y^{\prime }&={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }&=\sqrt {t} \\ \end{align*}

0.333

6491

24086

\begin{align*} \left (x^{3}+8\right ) y^{\prime \prime }+3 x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.333

6492

24714

\begin{align*} 4 y+y^{\prime \prime }&=2 x -8 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.333

6493

25306

\begin{align*} y^{\prime }+2 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.333

6494

6277

\begin{align*} 2 \left (1-x \right ) y+2 \left (1-2 x \right ) \left (-x +2\right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.334

6495

10076

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.334

6496

12905

\begin{align*} 2 y+a y^{3}+9 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.334

6497

15700

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x}-3 x^{2} \\ \end{align*}
Using Laplace transform method.

0.334

6498

16161

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x&=0 \\ \end{align*}

0.334

6499

18691

\begin{align*} x^{\prime }&=-\frac {5 x}{2}+\frac {3 y}{2} \\ y^{\prime }&=-\frac {3 x}{2}+\frac {y}{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.334

6500

21537

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime }&=3 x^{2}+4 \sin \left (x \right )-2 \cos \left (x \right ) \\ \end{align*}

0.334