| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 6401 |
\begin{align*}
9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| 6402 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2} \\
x_{2}^{\prime }&=6 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6403 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6404 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6405 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6406 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6407 |
\begin{align*}
x^{\prime }&=x-4 y \\
y^{\prime }&=4 x-7 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6408 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6409 |
\begin{align*}
a y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6410 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6411 |
\begin{align*}
y^{\prime }&=\frac {1}{1+\sin \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6412 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6413 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6414 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6415 |
\begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=3 x-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6416 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6417 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6418 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 x}+x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.330 |
|
| 6419 |
\begin{align*}
-y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=x \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6420 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6421 |
\begin{align*}
y^{\prime \prime }+3 y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| 6422 |
\begin{align*}
u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5}&=\cos \left (t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.331 |
|
| 6423 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6424 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6425 |
\begin{align*}
\left (a^{2}+b^{2}\right )^{2} y-4 a b y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6426 |
\begin{align*}
y^{\prime }-y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6427 |
\begin{align*}
y^{\prime \prime }-4 y&=10 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6428 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6429 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6430 |
\begin{align*}
x^{\prime }&=\frac {5 x}{4}+\frac {3 y}{4} \\
y^{\prime }&=-\frac {3 x}{4}-\frac {y}{4} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6431 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.331 |
|
| 6432 |
\begin{align*}
y^{\prime }&=\frac {2 y x}{y^{2}-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.331 |
|
| 6433 |
\begin{align*}
y^{\prime \prime \prime \prime }+16 y&=x^{2}-4 \cos \left (3 x \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6434 |
\begin{align*}
2 y^{\prime \prime }-5 y^{\prime }-3 y&=-9 x^{2}-1 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6435 |
\begin{align*}
t^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| 6436 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6437 |
\begin{align*}
y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6438 | \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=3 x +4 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.332 |
|
| 6439 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6440 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6441 |
\begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6442 |
\begin{align*}
y^{\prime }&=2 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6443 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}+2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6444 |
\begin{align*}
y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )+y f^{\prime }\left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6445 |
\begin{align*}
y^{\prime \prime }&=\operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.332 |
|
| 6446 |
\begin{align*}
4 f \left (x \right ) y y^{\prime \prime }&=4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.332 |
|
| 6447 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=0 \\
y \left (-1\right ) &= 3 \\
y^{\prime }\left (-1\right ) &= 9 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6448 |
\begin{align*}
y^{\prime }&=5-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6449 |
\begin{align*}
y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6450 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6451 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6452 |
\begin{align*}
y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6453 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6454 |
\begin{align*}
9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.332 |
|
| 6455 |
\begin{align*}
T^{\prime }&={\mathrm e}^{-t} \sin \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6456 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6457 |
\begin{align*}
y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.332 |
|
| 6458 | \begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=2 x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.332 |
|
| 6459 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=\frac {x_{1}}{2}-3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6460 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 7 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6461 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6462 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+15 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6463 |
\begin{align*}
y^{\prime \prime \prime }+3 k y^{\prime \prime }+3 k^{2} y^{\prime }+k^{3} y&={\mathrm e}^{-k x} f^{\prime \prime \prime }\left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6464 |
\begin{align*}
4 y+y^{\prime \prime }&=4 \sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6465 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6466 |
\begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6467 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| 6468 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6469 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6470 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6471 |
\begin{align*}
y^{\prime \prime }+y&=6 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6472 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6473 |
\begin{align*}
6 y+\left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.333 |
|
| 6474 |
\begin{align*}
y^{\prime }-{\mathrm e}^{x} y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6475 |
\begin{align*}
y x -x^{2} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6476 |
\begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6477 | \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✗ | 0.333 |
|
| 6478 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.333 |
|
| 6479 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6480 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6481 |
\begin{align*}
x^{\prime \prime }-4 x&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6482 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6483 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6484 |
\begin{align*}
y^{\prime \prime }&=x^{2} y-y^{\prime } \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6485 |
\begin{align*}
x^{\prime }&=5 x-y \\
y^{\prime }&=3 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6486 |
\begin{align*}
x^{\prime }&=a x+y \\
y^{\prime }&=a y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6487 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6488 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6489 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6490 |
\begin{align*}
x^{\prime }-2 y^{\prime }&={\mathrm e}^{t} \\
x^{\prime }+y^{\prime }&=\sqrt {t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6491 |
\begin{align*}
\left (x^{3}+8\right ) y^{\prime \prime }+3 x^{2} y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6492 |
\begin{align*}
4 y+y^{\prime \prime }&=2 x -8 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6493 |
\begin{align*}
y^{\prime }+2 y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| 6494 |
\begin{align*}
2 \left (1-x \right ) y+2 \left (1-2 x \right ) \left (-x +2\right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.334 |
|
| 6495 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| 6496 | \begin{align*}
2 y+a y^{3}+9 x^{2} y^{\prime \prime }&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 0.334 |
|
| 6497 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x}-3 x^{2} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| 6498 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| 6499 |
\begin{align*}
x^{\prime }&=-\frac {5 x}{2}+\frac {3 y}{2} \\
y^{\prime }&=-\frac {3 x}{2}+\frac {y}{2} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 3 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| 6500 |
\begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }&=3 x^{2}+4 \sin \left (x \right )-2 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.334 |
|