| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 5701 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| 5702 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| 5703 |
\begin{align*}
\left (a -x \right ) {y^{\prime }}^{2}+y^{\prime } y-b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.298 |
|
| 5704 |
\begin{align*}
y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y+2 y^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.298 |
|
| 5705 |
\begin{align*}
2 y y^{\prime \prime }&=3 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.298 |
|
| 5706 |
\begin{align*}
x^{\prime }&=-x-\frac {y}{2} \\
y^{\prime }&=2 x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| 5707 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| 5708 |
\begin{align*}
y^{\prime \prime }-4 y&=16 \,{\mathrm e}^{-2 x} x +8 x +4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| 5709 |
\begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| 5710 |
\begin{align*}
y^{\prime }&=x \sin \left (x^{2}\right ) \\
y \left (\frac {\sqrt {2}\, \sqrt {\pi }}{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5711 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5712 |
\begin{align*}
y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5713 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5714 |
\begin{align*}
y^{\prime }&=\frac {t}{t^{2}+4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5715 |
\begin{align*}
\frac {x}{y^{2}+x^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{y^{2}+x^{2}}-\frac {1}{x}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5716 |
\begin{align*}
y^{\prime \prime }+y&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5717 |
\begin{align*}
\sqrt {y}\, y^{\prime \prime }&=2 b x +2 a \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.299 |
|
| 5718 | \begin{align*}
x^{2}+y^{2}+x +x y^{\prime } y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.299 |
|
| 5719 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5720 |
\begin{align*}
\left (x -2\right ) y^{\prime }&=y x \\
y \left (0\right ) &= 4 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5721 |
\begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5722 |
\begin{align*}
z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5723 |
\begin{align*}
y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5724 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.299 |
|
| 5725 |
\(\left [\begin {array}{cc} 0 & -3 \\ 12 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.299 |
|
| 5726 |
\begin{align*}
x^{\prime }&=2 x+\operatorname {Heaviside}\left (-1+t \right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5727 |
\begin{align*}
x^{\prime }&=-2 x-y \\
y^{\prime }&=x-4 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5728 |
\begin{align*}
\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5729 |
\begin{align*}
y^{\prime }&=\cot \left (x \right ) \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5730 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=-8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5731 |
\begin{align*}
x^{\prime }&=-3 x+\frac {5 y}{2} \\
y^{\prime }&=-\frac {5 x}{2}+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5732 |
\begin{align*}
8 y^{\prime \prime }-10 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5733 |
\begin{align*}
y^{\prime }&=z \\
z^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5734 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5735 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5736 |
\begin{align*}
t y^{\prime \prime }+\left (t +2\right ) y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.299 |
|
| 5737 |
\begin{align*}
y^{\prime \prime \prime }-y&={\mathrm e}^{i t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| 5738 | \begin{align*}
y^{\prime \prime }+y&=\cos \left (2 t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.299 |
|
| 5739 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5740 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5741 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5742 |
\begin{align*}
y^{\prime \prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5743 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+t y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5744 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}+5 x_{2}+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\
x_{2}^{\prime }&=-2 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5745 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 \ln \left (x \right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5746 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5747 |
\begin{align*}
x^{\prime }&=3 x-y \\
y^{\prime }&=9 x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5748 |
\begin{align*}
4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.300 |
|
| 5749 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.300 |
|
| 5750 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.300 |
|
| 5751 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.300 |
|
| 5752 |
\(\left [\begin {array}{cc} -7 & 6 \\ 12 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.300 |
|
| 5753 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=-x+4 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5754 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5755 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5756 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5757 |
\begin{align*}
x^{\prime }&=-\frac {3 x}{2}+y \\
y^{\prime }&=-\frac {x}{4}-\frac {y}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5758 | \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=-3 t \,{\mathrm e}^{-t} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.300 |
|
| 5759 |
\begin{align*}
x^{\prime }&=-4 x-y+{\mathrm e}^{-t} \\
y^{\prime }&=x-2 y+2 \,{\mathrm e}^{-3 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5760 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5761 |
\begin{align*}
6 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5762 |
\begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=-x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5763 |
\begin{align*}
y^{\prime \prime }-4 y&=2-8 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5764 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5765 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| 5766 |
\begin{align*}
y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.300 |
|
| 5767 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5768 |
\begin{align*}
5 y^{\prime \prime }-2 y^{\prime } x +10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5769 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5770 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5771 |
\begin{align*}
x&={y^{\prime }}^{2}+y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5772 |
\begin{align*}
\left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5773 |
\begin{align*}
-\left (x +1\right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.301 |
|
| 5774 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5775 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -3} \\
y \left (\frac {3}{2}\right ) &= 4 \\
y^{\prime }\left (\frac {3}{2}\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5776 |
\begin{align*}
x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.301 |
|
| 5777 | \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.301 |
|
| 5778 |
\begin{align*}
y x -x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5779 |
\begin{align*}
y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5780 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5781 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5782 |
\begin{align*}
y^{\prime \prime }-4 a y^{\prime }+3 a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5783 |
\begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.301 |
|
| 5784 |
\begin{align*}
y y^{\prime }&=1-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5785 |
\begin{align*}
y^{\prime \prime }-y&=\delta \left (-1+t \right )-\delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5786 |
\begin{align*}
y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5787 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=5 \cos \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| 5788 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5789 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5790 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5791 |
\begin{align*}
\left (c x +b \right ) y+a \,x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.302 |
|
| 5792 |
\begin{align*}
y^{\prime }+\left (2+x \right ) y^{\prime \prime }+\left (2+x \right )^{2} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5793 |
\begin{align*}
\left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5794 |
\begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5795 |
\begin{align*}
y^{\prime \prime }+y&=2 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5796 | \begin{align*}
2 y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.302 |
|
| 5797 |
\begin{align*}
x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 y^{\prime \prime } x -8 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5798 |
\begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5799 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.302 |
|
| 5800 |
\begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.302 |
|