2.3.58 Problems 5701 to 5800

Table 2.647: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

5701

1274

\begin{align*} y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\ \end{align*}

0.298

5702

1362

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.298

5703

5482

\begin{align*} \left (a -x \right ) {y^{\prime }}^{2}+y^{\prime } y-b&=0 \\ \end{align*}

0.298

5704

6305

\begin{align*} y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y+2 y^{3} \\ \end{align*}

0.298

5705

6480

\begin{align*} 2 y y^{\prime \prime }&=3 {y^{\prime }}^{2} \\ \end{align*}

0.298

5706

18688

\begin{align*} x^{\prime }&=-x-\frac {y}{2} \\ y^{\prime }&=2 x-3 y \\ \end{align*}

0.298

5707

23993

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&={\mathrm e}^{-2 x} \\ \end{align*}

0.298

5708

24630

\begin{align*} y^{\prime \prime }-4 y&=16 \,{\mathrm e}^{-2 x} x +8 x +4 \\ \end{align*}

0.298

5709

25330

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.298

5710

1528

\begin{align*} y^{\prime }&=x \sin \left (x^{2}\right ) \\ y \left (\frac {\sqrt {2}\, \sqrt {\pi }}{2}\right ) &= 1 \\ \end{align*}

0.299

5711

1867

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=3\).

0.299

5712

1887

\begin{align*} y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.299

5713

2378

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\ \end{align*}

0.299

5714

3421

\begin{align*} y^{\prime }&=\frac {t}{t^{2}+4} \\ \end{align*}

0.299

5715

4299

\begin{align*} \frac {x}{y^{2}+x^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{y^{2}+x^{2}}-\frac {1}{x}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.299

5716

5717

\begin{align*} y^{\prime \prime }+y&=a x \\ \end{align*}

0.299

5717

6569

\begin{align*} \sqrt {y}\, y^{\prime \prime }&=2 b x +2 a \\ \end{align*}

0.299

5718

6946

\begin{align*} x^{2}+y^{2}+x +x y^{\prime } y&=0 \\ \end{align*}

0.299

5719

7104

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\ \end{align*}

0.299

5720

8578

\begin{align*} \left (x -2\right ) y^{\prime }&=y x \\ y \left (0\right ) &= 4 \\ \end{align*}
Series expansion around \(x=0\).

0.299

5721

9225

\begin{align*} 4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\ \end{align*}

0.299

5722

10678

\begin{align*} z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z}&=0 \\ \end{align*}

0.299

5723

11379

\begin{align*} y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b&=0 \\ \end{align*}

0.299

5724

12545

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \\ \end{align*}

0.299

5725

13166

\(\left [\begin {array}{cc} 0 & -3 \\ 12 & 0 \end {array}\right ]\)

N/A

N/A

N/A

0.299

5726

14360

\begin{align*} x^{\prime }&=2 x+\operatorname {Heaviside}\left (-1+t \right ) \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.299

5727

16027

\begin{align*} x^{\prime }&=-2 x-y \\ y^{\prime }&=x-4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.299

5728

16882

\begin{align*} \left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.299

5729

16991

\begin{align*} y^{\prime }&=\cot \left (x \right ) \cos \left (x \right ) \\ \end{align*}

0.299

5730

17661

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=-8 \\ \end{align*}

0.299

5731

18687

\begin{align*} x^{\prime }&=-3 x+\frac {5 y}{2} \\ y^{\prime }&=-\frac {5 x}{2}+2 y \\ \end{align*}

0.299

5732

23004

\begin{align*} 8 y^{\prime \prime }-10 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.299

5733

23934

\begin{align*} y^{\prime }&=z \\ z^{\prime }&=y \\ \end{align*}

0.299

5734

24671

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

0.299

5735

25116

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

0.299

5736

25248

\begin{align*} t y^{\prime \prime }+\left (t +2\right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

0.299

5737

25553

\begin{align*} y^{\prime \prime \prime }-y&={\mathrm e}^{i t} \\ \end{align*}

0.299

5738

25589

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 t \right ) \\ \end{align*}

0.299

5739

427

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.300

5740

515

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+y x&=0 \\ \end{align*}

0.300

5741

812

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.300

5742

1088

\begin{align*} y^{\prime \prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.300

5743

2623

\begin{align*} y^{\prime \prime }+y^{\prime }+t y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(t=0\).

0.300

5744

2779

\begin{align*} x_{1}^{\prime }&=4 x_{1}+5 x_{2}+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x_{2}^{\prime }&=-2 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.300

5745

4510

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 \ln \left (x \right ) x^{2} \\ \end{align*}

0.300

5746

9264

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\ \end{align*}

0.300

5747

9687

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=9 x-3 y \\ \end{align*}

0.300

5748

10601

\begin{align*} 4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y&=0 \\ \end{align*}

0.300

5749

10633

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y&=0 \\ \end{align*}

0.300

5750

10694

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y&=0 \\ \end{align*}

0.300

5751

11020

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.300

5752

14999

\(\left [\begin {array}{cc} -7 & 6 \\ 12 & -1 \end {array}\right ]\)

N/A

N/A

N/A

0.300

5753

16026

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.300

5754

16028

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.300

5755

16833

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.300

5756

17685

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.300

5757

18686

\begin{align*} x^{\prime }&=-\frac {3 x}{2}+y \\ y^{\prime }&=-\frac {x}{4}-\frac {y}{2} \\ \end{align*}

0.300

5758

18817

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=-3 t \,{\mathrm e}^{-t} \\ \end{align*}

0.300

5759

20922

\begin{align*} x^{\prime }&=-4 x-y+{\mathrm e}^{-t} \\ y^{\prime }&=x-2 y+2 \,{\mathrm e}^{-3 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.300

5760

22749

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

0.300

5761

23360

\begin{align*} 6 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

0.300

5762

23814

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=-x+2 y \\ \end{align*}

0.300

5763

24562

\begin{align*} y^{\prime \prime }-4 y&=2-8 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

0.300

5764

24708

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (3 x \right ) \\ \end{align*}

0.300

5765

24756

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

0.300

5766

25759

\begin{align*} y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\ \end{align*}

0.300

5767

621

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

0.301

5768

1076

\begin{align*} 5 y^{\prime \prime }-2 y^{\prime } x +10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.301

5769

1078

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.301

5770

1276

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

0.301

5771

3308

\begin{align*} x&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

0.301

5772

6178

\begin{align*} \left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.301

5773

6243

\begin{align*} -\left (x +1\right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

0.301

5774

7075

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\ \end{align*}

0.301

5775

8636

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -3} \\ y \left (\frac {3}{2}\right ) &= 4 \\ y^{\prime }\left (\frac {3}{2}\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

0.301

5776

10197

\begin{align*} x^{2} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.301

5777

16649

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

0.301

5778

20746

\begin{align*} y x -x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime }&=1 \\ \end{align*}

0.301

5779

21874

\begin{align*} y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\ \end{align*}

0.301

5780

22291

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&={\mathrm e}^{3 x} \\ \end{align*}

0.301

5781

23787

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

0.301

5782

24430

\begin{align*} y^{\prime \prime }-4 a y^{\prime }+3 a^{2} y&=0 \\ \end{align*}

0.301

5783

24849

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

0.301

5784

24949

\begin{align*} y y^{\prime }&=1-y \\ \end{align*}

0.301

5785

25318

\begin{align*} y^{\prime \prime }-y&=\delta \left (-1+t \right )-\delta \left (t -2\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.301

5786

25563

\begin{align*} y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&=0 \\ \end{align*}

0.301

5787

25566

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=5 \cos \left (\omega t \right ) \\ \end{align*}

0.301

5788

467

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.302

5789

854

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

0.302

5790

2548

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.302

5791

6195

\begin{align*} \left (c x +b \right ) y+a \,x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

0.302

5792

6689

\begin{align*} y^{\prime }+\left (2+x \right ) y^{\prime \prime }+\left (2+x \right )^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

0.302

5793

6863

\begin{align*} \left (x^{3} y^{3}+y^{2} x^{2}+y x +1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-y x +1\right ) x y^{\prime }&=0 \\ \end{align*}

0.302

5794

6865

\begin{align*} x^{2}+y^{2}-2 x y^{\prime } y&=0 \\ \end{align*}

0.302

5795

7279

\begin{align*} y^{\prime \prime }+y&=2 \,{\mathrm e}^{x} \\ \end{align*}

0.302

5796

8483

\begin{align*} 2 y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.302

5797

9313

\begin{align*} x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 y^{\prime \prime } x -8 y^{\prime }&=0 \\ \end{align*}

0.302

5798

10295

\begin{align*} y^{\prime } x&=1 \\ \end{align*}

0.302

5799

10482

\begin{align*} 2 y^{\prime \prime }+y^{\prime } x +3 y&=0 \\ \end{align*}

0.302

5800

10704

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y&=0 \\ \end{align*}

0.302