| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 5801 |
\begin{align*}
2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5802 |
\begin{align*}
y^{\prime \prime }+a \,x^{n} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5803 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5804 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5805 |
\begin{align*}
-2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5806 |
\begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5807 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5808 |
\begin{align*}
x^{\prime }&=4 x-6 y \\
y^{\prime }&=8 x-10 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5809 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 x \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| 5810 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5811 |
\begin{align*}
\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5812 |
\begin{align*}
\left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y+\left (x \cos \left (\frac {y}{x}\right )-\sin \left (\frac {y}{x}\right ) y\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.303 |
|
| 5813 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5814 |
\begin{align*}
y^{\prime \prime }+k^{2} x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5815 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5816 |
\begin{align*}
y+x \left (2 y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5817 |
\begin{align*}
x^{\prime }&=x-3 y \\
y^{\prime }&=3 x+7 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5818 | \begin{align*}
x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.303 |
|
| 5819 |
\begin{align*}
\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.303 |
|
| 5820 |
\begin{align*}
y^{\prime \prime }-y&=2+5 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5821 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-4 x-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5822 |
\begin{align*}
y^{\prime }&=\frac {x -1}{x +1} \\
y \left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5823 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5824 |
\begin{align*}
y^{\prime }&=\left (3 y+1\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5825 |
\begin{align*}
x^{\prime \prime }+6 x^{\prime }+9 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5826 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5827 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5828 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=y p \\
y \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5829 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-y+\delta \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.303 |
|
| 5830 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5831 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5832 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5833 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5834 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5835 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }-6 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5836 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5837 | \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+3 x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.303 |
|
| 5838 |
\begin{align*}
y^{\prime \prime }+25 y&=\sin \left (5 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5839 |
\begin{align*}
y^{\prime }&=t^{2}+1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5840 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| 5841 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5842 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=-x_{1}+4 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5843 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5844 |
\begin{align*}
\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5845 |
\begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5846 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5847 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+3 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5848 |
\begin{align*}
y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.304 |
|
| 5849 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5850 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5851 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=y p \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5852 |
\begin{align*}
x^{\prime }&=x-y+2 \cos \left (t \right ) \\
y^{\prime }&=x+y+3 \sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 3 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5853 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x&={\mathrm e}^{-x} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.304 |
|
| 5854 |
\begin{align*}
x^{\prime \prime }-6 x^{\prime }-7 x&=4 z -7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5855 |
\begin{align*}
\sin \left (\theta \right )^{2} r^{\prime }&=-b \cos \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| 5856 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=t \,{\mathrm e}^{c t} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.304 |
|
| 5857 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=f \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5858 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5859 |
\begin{align*}
a \,{\mathrm e}^{y-1}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.305 |
|
| 5860 |
\begin{align*}
\frac {2 y x +1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.305 |
|
| 5861 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -{\frac {17}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5862 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5863 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5864 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.305 |
|
| 5865 |
\begin{align*}
2 y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.305 |
|
| 5866 |
\begin{align*}
9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.305 |
|
| 5867 |
\begin{align*}
2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.305 |
|
| 5868 |
\begin{align*}
y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.305 |
|
| 5869 |
\begin{align*}
x^{\prime }&=3 x-y \\
y^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5870 |
\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.305 |
|
| 5871 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5872 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5873 |
\begin{align*}
y^{\prime \prime }+4 y&=\sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5874 |
\begin{align*}
4 y^{\prime }+5 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=-\frac {1}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5875 |
\begin{align*}
y^{\prime \prime }-2 y x&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= 6 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| 5876 | \begin{align*}
2 x-y^{\prime }-5 y&=0 \\
x^{\prime }+x+2 y&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -10 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.305 |
|
| 5877 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=2 \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5878 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5879 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\delta \left (t -\pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5880 |
\begin{align*}
y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )-y f^{\prime }\left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5881 |
\begin{align*}
\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.306 |
|
| 5882 |
\begin{align*}
f \left (x \right ) y+\left (2+f \left (x \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.306 |
|
| 5883 |
\begin{align*}
12 y+2 \left (3-4 x \right ) y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.306 |
|
| 5884 |
\begin{align*}
y^{\prime } x&=x^{2}+2 x -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5885 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5886 |
\begin{align*}
x^{\prime }&=3 x+2 y \\
y^{\prime }&=-2 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5887 |
\begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.306 |
|
| 5888 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5889 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.306 |
|
| 5890 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5891 |
\begin{align*}
x^{\prime \prime }+x&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5892 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5893 |
\begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5894 |
\begin{align*}
y^{\prime }-y^{3}&=8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5895 | \begin{align*}
y^{\prime }&=\frac {1}{t^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.306 |
|
| 5896 |
\begin{align*}
y^{\prime }&=\left (y-1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5897 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-2 y&={\mathrm e}^{t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5898 |
\begin{align*}
2 y^{\prime \prime }-15 y^{\prime }+27 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5899 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| 5900 |
\begin{align*}
\left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.307 |
|