2.3.59 Problems 5801 to 5900

Table 2.649: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

5801

11688

\begin{align*} 2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y&=0 \\ \end{align*}

0.302

5802

13705

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }&=0 \\ \end{align*}

0.302

5803

14738

\begin{align*} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.302

5804

16070

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{4 t} \\ \end{align*}

0.302

5805

16832

\begin{align*} -2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.302

5806

16834

\begin{align*} \left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.302

5807

17722

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.302

5808

23794

\begin{align*} x^{\prime }&=4 x-6 y \\ y^{\prime }&=8 x-10 y \\ \end{align*}

0.302

5809

24616

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 x \,{\mathrm e}^{-x} \\ \end{align*}

0.302

5810

1090

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.303

5811

6849

\begin{align*} \frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \\ \end{align*}

0.303

5812

6861

\begin{align*} \left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y+\left (x \cos \left (\frac {y}{x}\right )-\sin \left (\frac {y}{x}\right ) y\right ) x y^{\prime }&=0 \\ \end{align*}

0.303

5813

7831

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.303

5814

8609

\begin{align*} y^{\prime \prime }+k^{2} x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.303

5815

8612

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.303

5816

8739

\begin{align*} y+x \left (2 y x +1\right ) y^{\prime }&=0 \\ \end{align*}

0.303

5817

10058

\begin{align*} x^{\prime }&=x-3 y \\ y^{\prime }&=3 x+7 y \\ \end{align*}

0.303

5818

12570

\begin{align*} x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

0.303

5819

14147

\begin{align*} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y&=0 \\ \end{align*}

0.303

5820

15430

\begin{align*} y^{\prime \prime }-y&=2+5 x \\ \end{align*}

0.303

5821

16064

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-4 x-4 y \\ \end{align*}

0.303

5822

16176

\begin{align*} y^{\prime }&=\frac {x -1}{x +1} \\ y \left (0\right ) &= 8 \\ \end{align*}

0.303

5823

16179

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.303

5824

17131

\begin{align*} y^{\prime }&=\left (3 y+1\right )^{4} \\ \end{align*}

0.303

5825

17834

\begin{align*} x^{\prime \prime }+6 x^{\prime }+9 x&=0 \\ \end{align*}

0.303

5826

18698

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.303

5827

18771

\begin{align*} y^{\prime \prime }-4 y^{\prime }+16 y&=0 \\ \end{align*}

0.303

5828

20883

\begin{align*} \left (x +1\right ) y^{\prime }&=y p \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.303

5829

21292

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-y+\delta \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.303

5830

21298

\begin{align*} x^{\prime \prime }+2 x^{\prime }-x&=0 \\ \end{align*}

0.303

5831

23111

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=1 \\ \end{align*}

0.303

5832

23715

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.303

5833

23779

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-x_{1} \\ \end{align*}

0.303

5834

23811

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

0.303

5835

23981

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=x^{3} \\ \end{align*}

0.303

5836

24469

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

0.303

5837

24629

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+3 x \\ \end{align*}

0.303

5838

24709

\begin{align*} y^{\prime \prime }+25 y&=\sin \left (5 x \right ) \\ \end{align*}

0.303

5839

25041

\begin{align*} y^{\prime }&=t^{2}+1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.303

5840

25109

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

0.303

5841

2377

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ \end{align*}

0.304

5842

3819

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2} \\ x_{2}^{\prime }&=-x_{1}+4 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

0.304

5843

3994

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.304

5844

5582

\begin{align*} \left (a^{2}-y^{2}\right ) {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

0.304

5845

5776

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.304

5846

7596

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{3}} \\ \end{align*}

0.304

5847

11728

\begin{align*} x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+3 y^{2}&=0 \\ \end{align*}

0.304

5848

14164

\begin{align*} y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

0.304

5849

14378

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=x+2 y \\ \end{align*}

0.304

5850

18697

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.304

5851

20887

\begin{align*} \left (x +1\right ) y^{\prime }&=y p \\ \end{align*}
Series expansion around \(x=0\).

0.304

5852

20923

\begin{align*} x^{\prime }&=x-y+2 \cos \left (t \right ) \\ y^{\prime }&=x+y+3 \sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.304

5853

22199

\begin{align*} y^{\prime \prime }-y^{\prime } x&={\mathrm e}^{-x} \\ \end{align*}
Series expansion around \(x=0\).

0.304

5854

23036

\begin{align*} x^{\prime \prime }-6 x^{\prime }-7 x&=4 z -7 \\ \end{align*}

0.304

5855

23061

\begin{align*} \sin \left (\theta \right )^{2} r^{\prime }&=-b \cos \left (\theta \right ) \\ \end{align*}

0.304

5856

25609

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=t \,{\mathrm e}^{c t} \\ \end{align*}

0.304

5857

562

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.305

5858

811

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.305

5859

6390

\begin{align*} a \,{\mathrm e}^{y-1}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.305

5860

6924

\begin{align*} \frac {2 y x +1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}}&=0 \\ \end{align*}

0.305

5861

7621

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -{\frac {17}{2}} \\ \end{align*}

0.305

5862

7782

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\ \end{align*}

0.305

5863

7969

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{5 x} \\ \end{align*}

0.305

5864

10612

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y&=0 \\ \end{align*}

0.305

5865

10753

\begin{align*} 2 y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

0.305

5866

11007

\begin{align*} 9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y&=0 \\ \end{align*}

0.305

5867

11151

\begin{align*} 2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x}&=0 \\ \end{align*}

0.305

5868

12861

\begin{align*} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right )&=0 \\ \end{align*}

0.305

5869

15470

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=x+y \\ \end{align*}

0.305

5870

15741

\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\)

N/A

N/A

N/A

0.305

5871

16616

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=x^{3} \\ \end{align*}

0.305

5872

18344

\begin{align*} x^{\prime \prime }+2 x^{\prime }+6 x&=0 \\ \end{align*}

0.305

5873

18924

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.305

5874

19866

\begin{align*} 4 y^{\prime }+5 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=-\frac {1}{x^{2}} \\ \end{align*}

0.305

5875

22188

\begin{align*} y^{\prime \prime }-2 y x&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= 6 \\ \end{align*}
Series expansion around \(x=2\).

0.305

5876

22920

\begin{align*} 2 x-y^{\prime }-5 y&=0 \\ x^{\prime }+x+2 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -10 \\ \end{align*}

0.305

5877

324

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=2 \sin \left (3 x \right ) \\ \end{align*}

0.306

5878

1373

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

0.306

5879

1506

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\delta \left (t -\pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.306

5880

4650

\begin{align*} y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )-y f^{\prime }\left (x \right ) \\ \end{align*}

0.306

5881

5485

\begin{align*} \left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9&=0 \\ \end{align*}

0.306

5882

5933

\begin{align*} f \left (x \right ) y+\left (2+f \left (x \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.306

5883

6149

\begin{align*} 12 y+2 \left (3-4 x \right ) y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) y^{\prime \prime }&=0 \\ \end{align*}

0.306

5884

7695

\begin{align*} y^{\prime } x&=x^{2}+2 x -3 \\ \end{align*}

0.306

5885

9072

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x} \\ y \left (1\right ) &= 3 \\ \end{align*}

0.306

5886

9476

\begin{align*} x^{\prime }&=3 x+2 y \\ y^{\prime }&=-2 x-y \\ \end{align*}

0.306

5887

10413

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2}&=0 \\ \end{align*}

0.306

5888

10844

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\ \end{align*}

0.306

5889

10950

\begin{align*} \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y&=0 \\ \end{align*}

0.306

5890

14282

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.306

5891

14309

\begin{align*} x^{\prime \prime }+x&=t^{2} \\ \end{align*}

0.306

5892

14431

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

0.306

5893

16187

\begin{align*} y^{\prime }&=3 \sqrt {x +3} \\ y \left (1\right ) &= 0 \\ \end{align*}

0.306

5894

16199

\begin{align*} y^{\prime }-y^{3}&=8 \\ \end{align*}

0.306

5895

17044

\begin{align*} y^{\prime }&=\frac {1}{t^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

0.306

5896

17855

\begin{align*} y^{\prime }&=\left (y-1\right )^{2} \\ \end{align*}

0.306

5897

20917

\begin{align*} y^{\prime \prime }-3 y^{\prime }-2 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.306

5898

23012

\begin{align*} 2 y^{\prime \prime }-15 y^{\prime }+27 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.306

5899

24624

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\ \end{align*}

0.306

5900

433

\begin{align*} \left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.307