| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 5601 |
\begin{align*}
x^{\prime }&=-2 x \\
y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5602 |
\begin{align*}
y^{\prime }&=t^{2} \left (t^{2}+1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5603 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&={\mathrm e}^{4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5604 |
\begin{align*}
y^{\prime }+2 y&=4 \delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5605 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x +y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.293 |
|
| 5606 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5607 |
\begin{align*}
y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.293 |
|
| 5608 |
\begin{align*}
y^{\prime \prime }+y&=2 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5609 |
\begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5610 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| 5611 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5612 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=\frac {1}{\left (x^{2}+1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5613 |
\begin{align*}
{y^{\prime }}^{2}-2 y^{\prime }+4 y&=4 x -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.294 |
|
| 5614 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5615 |
\begin{align*}
x^{\prime }&=3 x+6 y \\
y^{\prime }&=-x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5616 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5617 |
\begin{align*}
y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5618 | \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y&=X \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.294 |
|
| 5619 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.294 |
|
| 5620 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5621 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5622 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5623 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5624 |
\begin{align*}
y^{\prime \prime }+16 y&=24 \sin \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5625 |
\begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| 5626 |
\begin{align*}
y^{\prime }+3 y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5627 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= v \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5628 |
\begin{align*}
y^{2} {y^{\prime }}^{2}+x y^{\prime } y-2 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5629 |
\begin{align*}
y^{\prime }&=\sin \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5630 |
\begin{align*}
\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} Series expansion around \(z=0\). |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5631 |
\begin{align*}
2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5632 |
\begin{align*}
2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.295 |
|
| 5633 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }&=x +\sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5634 |
\begin{align*}
x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.295 |
|
| 5635 |
\begin{align*}
y^{\prime \prime }+3 x^{2} y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5636 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=2 x -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5637 | \begin{align*}
y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.295 |
|
| 5638 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5639 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5640 |
\begin{align*}
\left (1-x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=5\). |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5641 |
\begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5642 |
\begin{align*}
{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 y x -2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5643 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +x^{2} y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5644 |
\begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5645 |
\begin{align*}
y^{\prime \prime }+y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5646 |
\begin{align*}
x^{\prime }&=-3 x+4 y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5647 |
\begin{align*}
x +\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5648 |
\begin{align*}
y^{\prime \prime }-y&=x +\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5649 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5650 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| 5651 |
\begin{align*}
3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| 5652 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5653 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5654 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5655 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5656 |
\begin{align*}
x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.296 |
|
| 5657 | \begin{align*}
y^{\prime }&=4 y^{2}-3 y+1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.296 |
|
| 5658 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5659 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5660 |
\begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5661 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5662 |
\begin{align*}
x^{\prime }&=-4 x-y \\
y^{\prime }&=x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5663 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5664 |
\begin{align*}
y^{\prime \prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5665 |
\begin{align*}
y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5666 |
\begin{align*}
c y^{\prime }&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5667 |
\begin{align*}
x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| 5668 |
\begin{align*}
9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| 5669 |
\begin{align*}
2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+7 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| 5670 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| 5671 |
\begin{align*}
\left (x +4\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| 5672 |
\begin{align*}
x^{2} y^{\prime \prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5673 |
\begin{align*}
y^{\prime \prime \prime \prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= \frac {\sqrt {2}}{2} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5674 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5675 |
\begin{align*}
{\mathrm e}^{y^{\prime }}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5676 | \begin{align*}
x^{\prime }&=2 x+\frac {y}{2} \\
y^{\prime }&=-\frac {x}{2}+y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.296 |
|
| 5677 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5678 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✗ |
✗ |
✓ |
✓ |
0.296 |
|
| 5679 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5680 |
\begin{align*}
y^{\prime \prime }-3 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5681 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +y p&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5682 |
\begin{align*}
y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| 5683 |
\begin{align*}
-t y^{\prime \prime }+\left (t -2\right ) y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| 5684 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5685 |
\begin{align*}
y^{\prime \prime }+\frac {y}{x^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.297 |
|
| 5686 |
\begin{align*}
\left (a +1\right ) x y^{\prime }+x^{2} y^{\prime \prime }&=x^{k} f \left (x^{k} y, k y+y^{\prime } x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.297 |
|
| 5687 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.297 |
|
| 5688 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-y f^{\prime \prime }\left (x \right )+f \left (x \right ) y^{3}-y^{4}&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
0.297 |
|
| 5689 |
\(\left [\begin {array}{cc} 0 & -4 \\ 36 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.297 |
|
| 5690 |
\begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5691 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5692 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.297 |
|
| 5693 |
\begin{align*}
x^{\prime }&=4 \,{\mathrm e}^{-t}-2 \\
x \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5694 |
\begin{align*}
x^{\prime }-2 x+3 y&=0 \\
-2 x+y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5695 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5696 | \begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=x-2 y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.297 |
|
| 5697 |
\begin{align*}
\left (x^{2}+4 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=0 \\
y \left (-2\right ) &= 0 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5698 |
\begin{align*}
y^{\prime \prime }-y&=4 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5699 |
\begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| 5700 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x}+{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.297 |
|