| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{i t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.311 |
|
| \begin{align*}
-y+y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.819 |
|
| \begin{align*}
-y+y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.837 |
|
| \begin{align*}
-y+y^{\prime }&={\mathrm e}^{t} \cos \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.513 |
|
| \begin{align*}
y^{\prime \prime }+4 y&={\mathrm e}^{t} \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=t \,{\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=t^{3} {\mathrm e}^{5 t} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.103 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=t^{3} \cos \left (5 t \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime }-a y&=f \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.223 |
|
| \begin{align*}
y^{\prime }-a y&={\mathrm e}^{c t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.945 |
|
| \begin{align*}
y^{\prime }-a y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.710 |
|
| \begin{align*}
y^{\prime }-a y&=t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{2 t} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.798 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }&=t \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
\frac {c y^{\prime \prime }}{\omega ^{2}}+c y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.320 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.122 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.072 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{a t} \\
y \left (0\right ) &= A \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.081 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{a t} \\
y \left (0\right ) &= A \\
y^{\prime }\left (0\right ) &= B \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.086 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=1 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.097 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.115 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| \begin{align*}
y^{\prime }-a y&=t \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.065 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=1 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.126 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.116 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\delta \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.075 |
|
| \begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
y^{\prime \prime }+B y^{\prime }+C y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| \begin{align*}
y^{\prime \prime }+B y^{\prime }+C y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.076 |
|
| \begin{align*}
y^{\prime }&=-\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
y^{\prime }&=-\sin \left (t \right )+\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.094 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.315 |
|
| \begin{align*}
y^{\prime }&=y^{2}-t \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
2.280 |
|
| \begin{align*}
y^{\prime }&=2 \,{\mathrm e}^{2 t}-4 \,{\mathrm e}^{t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
13.152 |
|
| \begin{align*}
x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.041 |
|
| \begin{align*}
t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y&=0 \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.040 |
|
| \begin{align*}
u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
1.716 |
|
| \begin{align*}
R^{\prime \prime }&=-\frac {k}{R^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
58.187 |
|
| \begin{align*}
\sin \left (t \right ) y^{\prime \prime \prime }-\cos \left (t \right ) y^{\prime }&=2 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✗ |
✓ |
✓ |
✗ |
0.674 |
|
| \begin{align*}
x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
12.420 |
|
| \begin{align*}
y^{2}-1+y^{\prime } x&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.868 |
|
| \begin{align*}
2 y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime }+20 y&=24 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }&=y-x +8 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.947 |
|
| \begin{align*}
y^{\prime }&=25+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.954 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.488 |
|
| \begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.517 |
|
| \begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
2 y x +\left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.547 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
y^{\prime }+4 y x&=8 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.217 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=12 x^{2} \\
\end{align*} |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime } x -3 y x&=1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.162 |
|
| \begin{align*}
2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=10 \sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.969 |
|
| \begin{align*}
y^{\prime }+2 y x&=1 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 1.122 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.199 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.147 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
3 y^{\prime }&=4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
2 y^{\prime \prime }+9 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.166 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.911 |
|
| \begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.439 |
|
| \begin{align*}
y^{\prime }&=y^{2}+2 y-3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
\left (y-1\right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=5 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\
y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.028 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.069 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 y^{\prime } x -78 y&=0 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.101 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.535 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= {\frac {1}{3}} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.822 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (-2\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.811 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.648 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (\frac {1}{2}\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.874 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.403 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{2}\right ) &= 0 \\
x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.704 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\
x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.792 |
|