| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.242 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= {\mathrm e} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.293 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.170 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y x} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
11.732 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.820 |
|
| \begin{align*}
y^{\prime }-y&=x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.836 |
|
| \begin{align*}
\left (4-y^{2}\right ) y^{\prime }&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.422 |
|
| \begin{align*}
\left (y^{3}+1\right ) y^{\prime }&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.010 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }&=x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.286 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.615 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (5\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.154 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (2\right ) &= -3 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.144 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.361 |
|
| \begin{align*}
y^{\prime } x&=y \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.013 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.552 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (-2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.149 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (2\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.790 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{6}\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✗ |
✗ |
✗ |
3.006 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.452 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\pi \right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
2.269 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y^{\prime }\left (\frac {\pi }{3}\right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
2.427 |
|
| \begin{align*}
y^{\prime }&=x -2 y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.204 |
|
| \begin{align*}
2 y+y^{\prime }&=3 x -6 \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.259 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
12.730 |
|
| \begin{align*}
2 y+y^{\prime }&=3 x -6 \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.152 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{2}&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
3.122 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.963 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.027 |
|
| \begin{align*}
y^{\prime }&=2 y-4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.528 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=18 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.339 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| \begin{align*}
y^{\prime }&=y \left (y-3\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| \begin{align*}
3 y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.985 |
|
| \begin{align*}
\left (-2+2 y\right ) y^{\prime }&=2 x -1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
5.294 |
|
| \begin{align*}
y^{\prime } x +y&=2 x \\
y \left (x_{0} \right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.430 |
|
| \begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
13.135 |
|
| \begin{align*}
{y^{\prime }}^{2}&=4 x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| \begin{align*}
y^{\prime }&=6 \sqrt {y}+5 x^{3} \\
y \left (-1\right ) &= 4 \\
\end{align*} |
[_Chini] |
✗ |
✗ |
✗ |
✗ |
1.777 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right )-2 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| \begin{align*}
y^{\prime \prime }+y \sec \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
2.079 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.173 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=\sec \left (\ln \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.148 |
|
| \begin{align*}
y^{\prime }+y \sin \left (x \right )&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.440 |
|
| \begin{align*}
y^{\prime }-2 y x&={\mathrm e}^{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.171 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 0.471 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.040 |
|
| \begin{align*}
y^{\prime } x +y&=\frac {1}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.709 |
|
| \begin{align*}
1+{y^{\prime }}^{2}&=\frac {1}{y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.300 |
|
| \begin{align*}
\left (y x +1\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.713 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= -11 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (1\right ) &= -2 \\
y^{\prime }\left (1\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (-1\right ) &= 1 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (-2\right ) &= 1 \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
7.864 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (3\right ) &= 0 \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
6.389 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_Riccati] |
✗ |
✓ |
✓ |
✗ |
6.118 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
5.192 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\
y \left (-6\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
0.777 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
0.413 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\
y \left (0\right ) &= -4 \\
\end{align*} | [‘y=_G(x,y’)‘] | ✗ | ✗ | ✗ | ✗ | 0.461 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\
y \left (8\right ) &= -4 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
0.418 |
|
| \begin{align*}
y^{\prime }&=-y x +1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.092 |
|
| \begin{align*}
y^{\prime }&=-y x +1 \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.119 |
|
| \begin{align*}
y^{\prime }&=-y x +1 \\
y \left (2\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.126 |
|
| \begin{align*}
y^{\prime }&=-y x +1 \\
y \left (0\right ) &= -4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.990 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.494 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.323 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (3\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.020 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= -{\frac {5}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.196 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.667 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.760 |
|
| \begin{align*}
y^{\prime }&=x +y \\
y \left (-2\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.261 |
|
| \begin{align*}
y^{\prime }&=x +y \\
y \left (1\right ) &= -3 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.944 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.671 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.721 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.225 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{5}+y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.497 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{5}+y \\
y \left (2\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.428 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (0\right ) &= -2 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.469 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (1\right ) &= {\frac {5}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.524 |
|
| \begin{align*}
y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\
y \left (2\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.930 |
|
| \begin{align*}
y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.765 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (-\frac {1}{2}\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.337 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (\frac {3}{2}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.346 |
|
| \begin{align*}
y^{\prime }&=x +y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.332 |
|
| \begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_Riccati, _special]] |
✗ |
✓ |
✓ |
✗ |
9.207 |
|