| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=y \,{\mathrm e}^{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.143 |
|
| \begin{align*}
y^{\prime }&=-4 t y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.113 |
|
| \begin{align*}
y^{\prime }&=t y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.298 |
|
| \begin{align*}
\left (t +1\right ) y^{\prime }&=4 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.559 |
|
| \begin{align*}
y^{\prime }&=\frac {-3 t^{2}-2 y^{2}}{4 t y+6 y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.593 |
|
| \begin{align*}
y^{\prime }&=-\frac {1+{\mathrm e}^{t y} y}{2 y+{\mathrm e}^{t y} t} \\
\end{align*} |
[‘x=_G(y,y’)‘] |
✓ |
✓ |
✓ |
✗ |
30.301 |
|
| \begin{align*}
y^{\prime }&=\frac {4 t -y}{t -6 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.990 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 t^{2}+2 y^{2}}{4 t y+6 y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
10.343 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{2 t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| \begin{align*}
y^{\prime }&=a t y+q \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
0.267 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
2 t y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.921 |
|
| \begin{align*}
m y^{\prime \prime }+k \sin \left (y\right )&=0 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] | ✓ | ✓ | ✓ | ✗ | 49.859 |
|
| \begin{align*}
y^{\prime \prime }&=-9 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.943 |
|
| \begin{align*}
y^{\prime \prime }&=-9 y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.810 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=F \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=16 y \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.074 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime \prime }+100 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| \begin{align*}
y^{\prime \prime }+100 y&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| \begin{align*}
y^{\prime \prime }+100 y&=\cos \left (\omega t \right )-\sin \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=\delta \left (-t +T \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.837 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
12.042 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
m y^{\prime \prime }-k y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| \begin{align*}
y^{\prime }&=a y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+\omega ^{2}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
2 y^{\prime \prime }+8 y^{\prime }+6 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.155 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.055 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.057 |
|
| \begin{align*}
4 y^{\prime \prime }+B y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime \prime }&=2 a y^{\prime }-\left (a^{2}-\omega ^{2}\right ) y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\left (8\right )}&=y \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.073 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.750 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {Direct}_{t} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.838 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| \begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
2 y^{\prime \prime }+4 y&={\mathrm e}^{i t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }+y&=10 \,{\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }+y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{t} {\mathrm e}^{i t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| \begin{align*}
y^{\prime \prime \prime }-y&={\mathrm e}^{i t} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+c y&={\mathrm e}^{i \omega t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.575 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+c y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime \prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime \prime }+k y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+\omega _{n}^{2} y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| \begin{align*}
y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=f \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=5 \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+2 z y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=\cos \left (\sqrt {\frac {k}{m}}\, t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| \begin{align*}
a y^{\prime \prime }+b y^{\prime }+c y&=f \left (t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 1.045 |
|
| \begin{align*}
4 a y^{\prime \prime }+b y^{\prime }+\frac {c y}{4}&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| \begin{align*}
g^{\prime \prime }-3 g^{\prime }+2 g&=\delta \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.495 |
|
| \begin{align*}
r^{\prime \prime }+\frac {5 r^{\prime }}{2}+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
r^{\prime \prime }+2 r^{\prime }+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
r^{\prime \prime }+r^{\prime }+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
r^{\prime \prime }+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.554 |
|
| \begin{align*}
y^{\prime \prime }+2 p y^{\prime }+\omega _{n}^{2} y&=\omega _{n}^{2} t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.548 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.752 |
|
| \begin{align*}
y^{\prime \prime }&=4 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.639 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }-y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+y&=t +{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 t} t \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.294 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=t +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=t^{2}+1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.778 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=t \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|