2.2.255 Problems 25401 to 25500

Table 2.523: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

25401

\begin{align*} y^{\prime }&=2-y \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.552

25402

\begin{align*} y^{\prime }&=-2 y+8 \\ y \left (0\right ) &= 6 \\ \end{align*}

[_quadrature]

0.721

25403

\begin{align*} y^{\prime }&=5 \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

2.910

25404

\begin{align*} y^{\prime }-9 y&=90 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.740

25405

\begin{align*} y^{\prime }+9 y&=90 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.719

25406

\begin{align*} y^{\prime }&=3 y+{\mathrm e}^{3 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.044

25407

\begin{align*} y^{\prime }-4 y&=-8 \\ \end{align*}

[_quadrature]

0.451

25408

\begin{align*} y^{\prime }+4 y&=8 \\ \end{align*}

[_quadrature]

0.461

25409

\begin{align*} y^{\prime }+2 y&=6 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.709

25410

\begin{align*} y^{\prime }+2 y&=-6 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.644

25411

\begin{align*} y+y^{\prime }&=\operatorname {Heaviside}\left (t -2\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

0.640

25412

\begin{align*} y+y^{\prime }&=\operatorname {Heaviside}\left (t -10\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

0.632

25413

\begin{align*} y^{\prime }&=\operatorname {Heaviside}\left (t -T \right ) \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.544

25414

\begin{align*} y^{\prime }-5 y&=3 \operatorname {Heaviside}\left (t -4\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

0.667

25415

\begin{align*} y+y^{\prime }&=7 \operatorname {Heaviside}\left (t -4\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

0.651

25416

\begin{align*} y^{\prime }+2 y&=\operatorname {Heaviside}\left (t -4\right )-\operatorname {Heaviside}\left (t -6\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.959

25417

\begin{align*} y^{\prime }&=\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )+\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.541

25418

\begin{align*} y^{\prime }&=2 y+\delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.854

25419

\begin{align*} y^{\prime }&=2 y+\delta \left (t -3\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.739

25420

\begin{align*} -y+y^{\prime }&=\delta \left (t -2\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

0.899

25421

\begin{align*} y+y^{\prime }&=\delta \left (t -2\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

0.825

25422

\begin{align*} y^{\prime }&=\operatorname {Heaviside}\left (-1+t \right )+\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.465

25423

\begin{align*} y^{\prime }&=-y+\operatorname {Heaviside}\left (t -3\right )+\delta \left (-1+t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

0.830

25424

\begin{align*} -y+y^{\prime }&=8 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.378

25425

\begin{align*} y+y^{\prime }&=8 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.390

25426

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{\frac {201 t}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.400

25427

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.128

25428

\begin{align*} y^{\prime }+4 y&=8 \,{\mathrm e}^{-4 t}+20 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.048

25429

\begin{align*} y^{\prime }-a y&={\mathrm e}^{c t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.434

25430

\begin{align*} y^{\prime }-a \left (t \right ) y&=0 \\ \end{align*}

[_separable]

1.857

25431

\begin{align*} y^{\prime }-a \left (t \right ) y&=q \left (t \right ) \\ \end{align*}

[_linear]

1.669

25432

\begin{align*} y^{\prime }-a \left (t \right ) y&=q \\ \end{align*}

[_linear]

1.329

25433

\begin{align*} y^{\prime }-a \left (t \right ) y&=\operatorname {Heaviside}\left (t \right ) \\ \end{align*}

[_linear]

0.732

25434

\begin{align*} y^{\prime }-a \left (t \right ) y&=\delta \left (t \right ) \\ \end{align*}

[_linear]

0.446

25435

\begin{align*} y^{\prime }-a \left (t \right ) y&={\mathrm e}^{c t} \\ \end{align*}

[_linear]

1.695

25436

\begin{align*} y^{\prime }&=a \left (t \right ) y+q \left (t \right ) \\ \end{align*}

[_linear]

1.515

25437

\begin{align*} y^{\prime }&=2 y+3 \cos \left (t \right )+4 \sin \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.027

25438

\begin{align*} y^{\prime }&=-y-\cos \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.610

25439

\begin{align*} y^{\prime }&=y+\cos \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.536

25440

\begin{align*} y^{\prime }-4 y&=\cos \left (3 t \right )+\sin \left (3 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.969

25441

\begin{align*} y^{\prime }-a y&=A \cos \left (\omega t \right )+B \sin \left (\omega t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.340

25442

\begin{align*} y^{\prime }&=A \cos \left (\omega t \right )+B \sin \left (\omega t \right ) \\ \end{align*}

[_quadrature]

0.408

25443

\begin{align*} y^{\prime }-3 y&=5 \,{\mathrm e}^{2 i t} \\ \end{align*}

[[_linear, ‘class A‘]]

23.757

25444

\begin{align*} y^{\prime }&=2 y-{\mathrm e}^{i t} \\ \end{align*}

[[_linear, ‘class A‘]]

24.916

25445

\begin{align*} z^{\prime }+4 z&={\mathrm e}^{8 i t} \\ \end{align*}

[[_linear, ‘class A‘]]

51.434

25446

\begin{align*} z^{\prime }+4 i z&={\mathrm e}^{8 i t} \\ \end{align*}

[[_linear, ‘class A‘]]

0.868

25447

\begin{align*} z^{\prime }+4 i z&={\mathrm e}^{8 t} \\ \end{align*}

[[_linear, ‘class A‘]]

51.465

25448

\begin{align*} y^{\prime }-a y&=R \cos \left (\omega t -\phi \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.034

25449

\begin{align*} -2 y+y^{\prime }&=\cos \left (\omega t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.770

25450

\begin{align*} -y+y^{\prime }&=\sin \left (\omega t \right )+\cos \left (\omega t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.012

25451

\begin{align*} y^{\prime }-\sqrt {3}\, y&=\sin \left (t \right )+\cos \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.157

25452

\begin{align*} y^{\prime }-a y&=A \cos \left (\omega t \right )+B \sin \left (\omega t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.976

25453

\begin{align*} y^{\prime }&=1+y \\ y \left (0\right ) &= 4 \\ \end{align*}

[_quadrature]

0.554

25454

\begin{align*} y^{\prime }&=y-1 \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

0.557

25455

\begin{align*} y^{\prime }&=t^{2}+y \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.623

25456

\begin{align*} y^{\prime }&=y+{\mathrm e}^{t} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.169

25457

\begin{align*} y^{\prime }&=y-t^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.533

25458

\begin{align*} y^{\prime }&=-{\mathrm e}^{t}+y \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.162

25459

\begin{align*} y^{\prime }&=y-{\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.331

25460

\begin{align*} y^{\prime }&=y+2 t \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.915

25461

\begin{align*} y^{\prime }&=t +2 y \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.005

25462

\begin{align*} y^{\prime }&=2 y+{\mathrm e}^{t} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.211

25463

\begin{align*} y^{\prime }&=y+{\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.991

25464

\begin{align*} y^{\prime }&=a \left (t \right ) y+\delta \left (-t +s \right ) \\ \end{align*}

[_linear]

0.482

25465

\begin{align*} y^{\prime }&=\sin \left (t \right ) y+Q \sin \left (t \right ) \\ \end{align*}

[_separable]

2.329

25466

\begin{align*} y^{\prime }&=\sin \left (t \right ) y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.441

25467

\begin{align*} y^{\prime }&=\frac {y}{t +1}+10 \\ \end{align*}

[_linear]

1.947

25468

\begin{align*} y^{\prime }&=\frac {y}{t +1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.036

25469

\begin{align*} y^{\prime }&=a y-b y^{2} \\ \end{align*}

[_quadrature]

3.797

25470

\begin{align*} m y^{\prime \prime }+k y&=F \\ \end{align*}

[[_2nd_order, _missing_x]]

2.354

25471

\begin{align*} y^{\prime }&=1+y \\ y \left (0\right ) &= -1 \\ \end{align*}

[_quadrature]

0.410

25472

\begin{align*} y^{\prime }&=1+y \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.504

25473

\begin{align*} y^{\prime }&=y^{2}+y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.906

25474

\begin{align*} y^{\prime }&=a y-b y^{n} \\ \end{align*}

[_quadrature]

1.931

25475

\begin{align*} y^{\prime }&=-y^{2}+y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

0.863

25476

\begin{align*} y^{\prime }&=-y^{2}+y \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

1.049

25477

\begin{align*} y^{\prime }&=-y^{2}+y \\ y \left (0\right ) &= -1 \\ \end{align*}

[_quadrature]

0.832

25478

\begin{align*} y^{\prime }&=y-y^{2}-\frac {1}{4} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_quadrature]

0.514

25479

\begin{align*} y^{\prime }&=y \left (1-y\right ) \left (2-y\right ) \\ \end{align*}

[_quadrature]

1.133

25480

\begin{align*} y^{\prime }&=y \left (1-\ln \left (y\right )\right ) \\ \end{align*}

[_quadrature]

0.877

25481

\begin{align*} y^{\prime }&=2 \left (1-y\right ) \left (1-{\mathrm e}^{y}\right ) \\ \end{align*}

[_quadrature]

1.026

25482

\begin{align*} y^{\prime }&=\left (1-y^{2}\right ) \left (4-y^{2}\right ) \\ \end{align*}

[_quadrature]

0.611

25483

\begin{align*} y^{\prime }&=k \left (m^{4}-y^{4}\right ) \\ y \left (0\right ) &= \frac {m}{2} \\ \end{align*}

[_quadrature]

8.320

25484

\begin{align*} y^{\prime }&=a y-y^{3} \\ \end{align*}

[_quadrature]

5.449

25485

\begin{align*} y^{\prime }&=\sin \left (y\right ) \\ \end{align*}

[_quadrature]

25.374

25486

\begin{align*} y^{\prime }&=\sin \left (y\right )^{2} \\ \end{align*}

[_quadrature]

1.524

25487

\begin{align*} y^{\prime }&=y^{2}-y^{4} \\ \end{align*}

[_quadrature]

0.633

25488

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

2.375

25489

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_quadrature]

2.879

25490

\begin{align*} y^{\prime }&=a \left (t \right ) y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.132

25491

\begin{align*} y^{\prime }&=t y \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

1.886

25492

\begin{align*} y^{\prime }&=t^{m} y^{n} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

113.811

25493

\begin{align*} y^{\prime }&=a \left (t \right ) y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.929

25494

\begin{align*} y^{\prime }&=t +y \\ \end{align*}

[[_linear, ‘class A‘]]

0.909

25495

\begin{align*} y^{\prime }&=\frac {y}{t} \\ \end{align*}

[_separable]

1.835

25496

\begin{align*} y^{\prime }&=\frac {c t -a y}{A t +b y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

47.760

25497

\begin{align*} y^{\prime }&=\frac {y^{2}}{t^{2}} \\ \end{align*}

[_separable]

3.409

25498

\begin{align*} y^{\prime }&={\mathrm e}^{t +y} \\ \end{align*}

[_separable]

1.850

25499

\begin{align*} y^{\prime }&=t y+t +y+1 \\ \end{align*}

[_separable]

2.207

25500

\begin{align*} y^{\prime }&=\left (y+4\right ) \cos \left (t \right ) \\ \end{align*}

[_separable]

2.375