2.2.252 Problems 25101 to 25200

Table 2.517: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

25101

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

25102

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.274

25103

\begin{align*} 2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

25104

\begin{align*} y^{\prime \prime }+13 y^{\prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.202

25105

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.274

25106

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.254

25107

\begin{align*} y^{\prime \prime }-4 y^{\prime }-21 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

25108

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.228

25109

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

25110

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

25111

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.407

25112

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

25113

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.341

25114

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.378

25115

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.399

25116

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.299

25117

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

25118

\begin{align*} y^{\prime \prime }+4 y&=1+{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.361

25119

\begin{align*} y^{\prime \prime }-y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.313

25120

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

25121

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

25122

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.354

25123

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

25124

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 t \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

25125

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 t} \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

25126

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=104 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

25127

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.465

25128

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=8 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.535

25129

\begin{align*} y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.492

25130

\begin{align*} y^{\prime \prime }-4 y&=2-8 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.453

25131

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{-6 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

25132

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=16 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

25133

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

25134

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.293

25135

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=6 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.366

25136

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

25137

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

25138

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&=10 t \,{\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

25139

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=36 t \,{\mathrm e}^{4 t} \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.551

25140

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

25141

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{t} \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.485

25142

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.107

25143

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.071

25144

\begin{align*} y^{\prime \prime \prime \prime }+y^{4}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.029

25145

\begin{align*} y^{\left (5\right )}+t y^{\prime \prime }-3 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.047

25146

\begin{align*} y^{\prime \prime \prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.053

25147

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.054

25148

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.054

25149

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.051

25150

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.055

25151

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-25 y^{\prime }+50 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.065

25152

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+25 y^{\prime }+50 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.058

25153

\begin{align*} y^{\left (6\right )}+27 y^{\prime \prime \prime \prime }+243 y^{\prime \prime }+729 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.090

25154

\begin{align*} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+18 y^{\prime \prime }-27 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.060

25155

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.103

25156

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.107

25157

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.504

25158

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.127

25159

\begin{align*} y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.488

25160

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.112

25161

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime }&=4 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_high_order, _missing_y]]

0.178

25162

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=t \\ \end{align*}

[[_3rd_order, _missing_y]]

0.114

25163

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.122

25164

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.307

25165

\begin{align*} y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.321

25166

\begin{align*} y_{1}^{\prime }-6 y_{1}&=-4 y_{2} \\ y_{2}^{\prime }&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.445

25167

\begin{align*} y_{1}^{\prime }-3 y_{1}&=-4 y_{2} \\ y_{2}^{\prime }+y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.388

25168

\begin{align*} y_{1}^{\prime }&=2 y_{2} \\ y_{2}^{\prime }&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.406

25169

\begin{align*} y_{1}^{\prime }-2 y_{1}&=2 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }+y_{2}&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 3 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.027

25170

\begin{align*} y_{1}^{\prime }+4 y_{1}&=10 y_{2} \\ y_{2}^{\prime \prime }-6 y_{2}^{\prime }+23 y_{2}&=9 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 2 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.030

25171

\begin{align*} y_{1}^{\prime }-2 y_{1}&=-2 y_{2} \\ y_{2}^{\prime \prime }+y_{2}^{\prime }+6 y_{2}&=4 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 5 \\ y_{2}^{\prime }\left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.032

25172

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}^{\prime }+6 y_{1}&=5 y_{2} \\ y_{2}^{\prime \prime }-2 y_{2}^{\prime }+6 y_{2}&=9 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{1}^{\prime }\left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 6 \\ y_{2}^{\prime }\left (0\right ) &= 6 \\ \end{align*}

system_of_ODEs

0.030

25173

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -1 \\ y_{1}^{\prime }\left (0\right ) &= -4 \\ y_{2} \left (0\right ) &= 1 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.029

25174

\begin{align*} y_{1}^{\prime }&=-y_{2} \\ y_{2}^{\prime }-2 y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.250

25175

\begin{align*} y_{1}^{\prime }-y_{1}&=-2 y_{2} \\ y_{2}^{\prime }-y_{2}&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.264

25176

\begin{align*} y_{1}^{\prime }-2 y_{1}&=-y_{2} \\ y_{2}^{\prime \prime }-y_{2}^{\prime }+y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= -1 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.030

25177

\begin{align*} y_{1}^{\prime }+2 y_{1}&=5 y_{2} \\ y_{2}^{\prime \prime }-2 y_{2}^{\prime }+5 y_{2}&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.030

25178

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 10 \\ y_{1}^{\prime }\left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 10 \\ y_{2}^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.030

25179

\begin{align*} y^{\prime \prime }+y y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.837

25180

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.307

25181

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

25182

\begin{align*} y^{\prime \prime }+t y^{\prime }+\left (t^{2}+1\right )^{2} y^{2}&=0 \\ \end{align*}

[NONE]

0.179

25183

\begin{align*} 3 t^{2} y^{\prime \prime }+2 t y^{\prime }+y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

7.269

25184

\begin{align*} y^{\prime \prime }+\sqrt {y^{\prime }}+y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.200

25185

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.575

25186

\begin{align*} y^{\prime \prime }-2 y&=t y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.125

25187

\begin{align*} y^{\prime \prime }+2 y+t \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.348

25188

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\sin \left (t \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.519

25189

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-5\right ) y&=0 \\ \end{align*}

[_Bessel]

0.414

25190

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.264

25191

\begin{align*} t^{2} y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.384

25192

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.535

25193

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.267

25194

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.503

25195

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.490

25196

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.506

25197

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.526

25198

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.041

25199

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.634

25200

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.108