| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime \prime }+13 y^{\prime }+36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.254 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-21 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.228 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=1+{\mathrm e}^{t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.361 |
|
| \begin{align*}
y^{\prime \prime }-y&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=25 t \,{\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 t} \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+25 y&=104 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=8 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.535 |
|
| \begin{align*}
y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=2-8 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{-6 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=16 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=6 \,{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.437 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&=10 t \,{\mathrm e}^{4 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+25 y&=36 t \,{\mathrm e}^{4 t} \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{t} \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime }+4 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.071 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+y^{4}&=0 \\
\end{align*} |
[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| \begin{align*}
y^{\left (5\right )}+t y^{\prime \prime }-3 y&=0 \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.047 |
|
| \begin{align*}
y^{\prime \prime \prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.053 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.054 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.054 |
|
| \begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.051 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.055 |
|
| \begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }-25 y^{\prime }+50 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.065 |
|
| \begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }+25 y^{\prime }+50 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.058 |
|
| \begin{align*}
y^{\left (6\right )}+27 y^{\prime \prime \prime \prime }+243 y^{\prime \prime }+729 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.090 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+18 y^{\prime \prime }-27 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.060 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
y^{\prime \prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.103 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{t} \\
\end{align*} | [[_3rd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.107 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.127 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.112 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime }&=4 \,{\mathrm e}^{2 t} t \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime \prime }+4 y^{\prime }&=t \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.114 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.122 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y_{1}^{\prime }-6 y_{1}&=-4 y_{2} \\
y_{2}^{\prime }&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y_{1}^{\prime }-3 y_{1}&=-4 y_{2} \\
y_{2}^{\prime }+y_{2}&=y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y_{1}^{\prime }&=2 y_{2} \\
y_{2}^{\prime }&=-2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y_{1}^{\prime }-2 y_{1}&=2 y_{2} \\
y_{2}^{\prime \prime }+2 y_{2}^{\prime }+y_{2}&=-2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 3 \\
y_{2} \left (0\right ) &= 0 \\
y_{2}^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.027 |
|
| \begin{align*}
y_{1}^{\prime }+4 y_{1}&=10 y_{2} \\
y_{2}^{\prime \prime }-6 y_{2}^{\prime }+23 y_{2}&=9 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 2 \\
y_{2}^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.030 |
|
| \begin{align*}
y_{1}^{\prime }-2 y_{1}&=-2 y_{2} \\
y_{2}^{\prime \prime }+y_{2}^{\prime }+6 y_{2}&=4 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 5 \\
y_{2}^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.032 |
|
| \begin{align*}
y_{1}^{\prime \prime }+2 y_{1}^{\prime }+6 y_{1}&=5 y_{2} \\
y_{2}^{\prime \prime }-2 y_{2}^{\prime }+6 y_{2}&=9 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{1}^{\prime }\left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 6 \\
y_{2}^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.030 |
|
| \begin{align*}
y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\
y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= -1 \\
y_{1}^{\prime }\left (0\right ) &= -4 \\
y_{2} \left (0\right ) &= 1 \\
y_{2}^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| \begin{align*}
y_{1}^{\prime }&=-y_{2} \\
y_{2}^{\prime }-2 y_{2}&=y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y_{1}^{\prime }-y_{1}&=-2 y_{2} \\
y_{2}^{\prime }-y_{2}&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= -2 \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.264 |
|
| \begin{align*}
y_{1}^{\prime }-2 y_{1}&=-y_{2} \\
y_{2}^{\prime \prime }-y_{2}^{\prime }+y_{2}&=y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= -1 \\
y_{2}^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.030 |
|
| \begin{align*}
y_{1}^{\prime }+2 y_{1}&=5 y_{2} \\
y_{2}^{\prime \prime }-2 y_{2}^{\prime }+5 y_{2}&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 0 \\
y_{2}^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.030 |
|
| \begin{align*}
y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\
y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 10 \\
y_{1}^{\prime }\left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 10 \\
y_{2}^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.030 |
|
| \begin{align*}
y^{\prime \prime }+y y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.837 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }+t y^{\prime }+\left (t^{2}+1\right )^{2} y^{2}&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.179 |
|
| \begin{align*}
3 t^{2} y^{\prime \prime }+2 t y^{\prime }+y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
7.269 |
|
| \begin{align*}
y^{\prime \prime }+\sqrt {y^{\prime }}+y&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.200 |
|
| \begin{align*}
y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y&=\sqrt {t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
0.575 |
|
| \begin{align*}
y^{\prime \prime }-2 y&=t y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.125 |
|
| \begin{align*}
y^{\prime \prime }+2 y+t \sin \left (y\right )&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.348 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+\sin \left (t \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.519 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-5\right ) y&=0 \\
\end{align*} |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-y&=\sqrt {t} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.264 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.384 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 0.535 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.267 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.503 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.490 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.506 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.526 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.041 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.634 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.108 |
|