| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
2 t y+y^{\prime }&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.190 |
|
| \begin{align*}
t^{2} y^{\prime }+2 t y&=1 \\
y \left (2\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
t^{2} y^{\prime }&=y^{2}+t y+t^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.209 |
|
| \begin{align*}
y^{\prime }&=\frac {4 t -3 y}{t -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
3.636 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\
y \left (2\right ) &= 4 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.321 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 t y}{t^{2}+t y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.098 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2}-t^{2}}{2 t y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
60.106 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}+y^{2}}{t y} \\
y \left ({\mathrm e}\right ) &= 2 \,{\mathrm e} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.836 |
|
| \begin{align*}
t y^{\prime }&=y+\sqrt {t^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✗ |
17.610 |
|
| \begin{align*}
t^{2} y^{\prime }&=t y+y \sqrt {t^{2}+y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.283 |
|
| \begin{align*}
-y+y^{\prime }&=t y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.018 |
|
| \begin{align*}
y+y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.075 |
|
| \begin{align*}
t y+y^{\prime }&=t y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.640 |
|
| \begin{align*}
t y+y^{\prime }&=t^{3} y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.315 |
|
| \begin{align*}
\left (-t^{2}+1\right ) y^{\prime }-t y&=5 t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.399 |
|
| \begin{align*}
\frac {y}{t}+y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.956 |
|
| \begin{align*}
y y^{\prime }+t y^{2}&=t \\
y \left (0\right ) &= -2 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.911 |
|
| \begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.672 |
|
| \begin{align*}
y+y^{\prime }&=t y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.472 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{2 t -2 y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| \begin{align*}
y^{\prime }&=\left (t -y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
0.990 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\left (t +y\right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.545 |
|
| \begin{align*}
y^{\prime }&=\sin \left (t -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.305 |
|
| \begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.687 |
|
| \begin{align*}
y^{\prime }&=\tan \left (y\right )+\frac {2 \cos \left (t \right )}{\cos \left (y\right )} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
28.393 |
|
| \begin{align*}
y^{\prime }+y \ln \left (y\right )&=t y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.405 |
|
| \begin{align*}
y^{\prime }&=-{\mathrm e}^{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
y+2 t +2 t y y^{\prime }&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✗ |
✗ |
✗ |
✗ |
5.502 |
|
| \begin{align*}
y-t +\left (t +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.887 |
|
| \begin{align*}
2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
1.017 |
|
| \begin{align*}
y^{2}+2 t y y^{\prime }+3 t^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.376 |
|
| \begin{align*}
3 y-5 t +2 y y^{\prime }-t y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
6.857 |
|
| \begin{align*}
2 t y+\left (t^{2}+3 y^{2}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✗ |
✗ |
0.835 |
|
| \begin{align*}
2 t y+2 t^{3}+\left (t^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 2.480 |
|
| \begin{align*}
t^{2}-y-t y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.744 |
|
| \begin{align*}
\left (y^{3}-t \right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
3.215 |
|
| \begin{align*}
a t +b y-\left (c t +d y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.496 |
|
| \begin{align*}
y^{\prime }&=t y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.718 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| \begin{align*}
y^{\prime }&=\frac {t -y}{t +y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.539 |
|
| \begin{align*}
y^{\prime }&=t^{2}+1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime }&=t y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.634 |
|
| \begin{align*}
y^{\prime }&=t -y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.857 |
|
| \begin{align*}
y^{\prime }&=t +y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
25.266 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.512 |
|
| \begin{align*}
y^{\prime }&=1+\left (t -y\right )^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
1.471 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.907 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.410 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.008 |
|
| \begin{align*}
y^{\prime }&=\frac {t -y}{t +y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.406 |
|
| \begin{align*}
y^{\prime }&=\frac {t -y}{t +y} \\
y \left (1\right ) &= -1 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 4.513 |
|
| \begin{align*}
y^{\prime }&=a y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.962 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.088 |
|
| \begin{align*}
y^{\prime }&=\cos \left (t +y\right ) \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✗ |
✓ |
✓ |
30.097 |
|
| \begin{align*}
t y^{\prime }&=2 y-t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.990 |
|
| \begin{align*}
t y^{\prime }&=2 y-t \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✗ |
✓ |
✓ |
4.136 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| \begin{align*}
y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| \begin{align*}
y^{\prime }-4 y&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
y^{\prime }-4 y&={\mathrm e}^{4 t} \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.124 |
|
| \begin{align*}
y^{\prime }+a y&={\mathrm e}^{-a t} \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| \begin{align*}
y^{\prime }+2 y&=3 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| \begin{align*}
y^{\prime }+2 y&=t \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.119 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.117 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.118 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.163 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=0 \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=4 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.164 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.145 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=8 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.164 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=9 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.164 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=150 t \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=4 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.165 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=4 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{t} \\
y \left (0\right ) &= -3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=4 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=50 \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sin \left (3 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=2 \cos \left (t \right )+\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=36 t \sin \left (3 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }-3 y&=4 t^{2} \cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=32 \cos \left (2 t \right ) t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
y^{\prime \prime }-y y^{\prime }&=6 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
51.208 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }+4 y&=0 \\
\end{align*} | [[_3rd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.091 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (y\right )&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
36.077 |
|
| \begin{align*}
t y^{\prime }+y&=\ln \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.196 |
|
| \begin{align*}
y^{\prime \prime }+8 y&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
y^{\prime \prime }+2&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.913 |
|
| \begin{align*}
2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|