2.2.253 Problems 25201 to 25300

Table 2.519: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

25201

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.080

25202

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.102

25203

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.065

25204

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.541

25205

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.087

25206

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.868

25207

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.854

25208

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.841

25209

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= a \\ y^{\prime }\left (1\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.829

25210

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }-4 y&=t^{4} \\ y \left (-1\right ) &= y_{1} \\ y^{\prime }\left (-1\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.988

25211

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=\frac {t^{2}+1}{-t^{2}+1} \\ y \left (2\right ) &= y_{1} \\ y^{\prime }\left (2\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.228

25212

\begin{align*} \sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= y_{1} \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.979

25213

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+t^{2} y&=\cos \left (t \right ) \\ y \left (0\right ) &= y_{1} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

23.261

25214

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y&=0 \\ y \left (10\right ) &= y_{1} \\ y^{\prime }\left (10\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.871

25215

\begin{align*} t \left (t^{2}-4\right ) y^{\prime \prime }+y&={\mathrm e}^{t} \\ y \left (1\right ) &= y_{1} \\ y^{\prime }\left (1\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.077

25216

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.169

25217

\begin{align*} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

25218

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.662

25219

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.665

25220

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.869

25221

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.359

25222

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.712

25223

\begin{align*} 2 t^{2} y^{\prime \prime }-5 t y^{\prime }+3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.985

25224

\begin{align*} 9 t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.823

25225

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.964

25226

\begin{align*} 4 t^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.227

25227

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }-21 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.605

25228

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.800

25229

\begin{align*} t^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.331

25230

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.867

25231

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.828

25232

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.063

25233

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

0.959

25234

\begin{align*} 4 t^{2} y^{\prime \prime }+y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

0.342

25235

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\ y \left (1\right ) &= -3 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.217

25236

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.287

25237

\begin{align*} t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.253

25238

\begin{align*} t y^{\prime \prime }+\left (t +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.167

25239

\begin{align*} t y^{\prime \prime }+\left (2+4 t \right ) y^{\prime }+\left (4+4 t \right ) y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.225

25240

\begin{align*} t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\ \end{align*}
Using Laplace transform method.

[_Lienard]

0.241

25241

\begin{align*} t y^{\prime \prime }-4 y^{\prime }+t y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_Lienard]

0.184

25242

\begin{align*} t y^{\prime \prime }+\left (2 t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.225

25243

\begin{align*} -t y^{\prime \prime }+\left (t -2\right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.296

25244

\begin{align*} -t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.272

25245

\begin{align*} t y^{\prime \prime }+\left (2-5 t \right ) y^{\prime }+\left (6 t -5\right ) y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.336

25246

\begin{align*} t y^{\prime \prime }+2 y^{\prime }+9 t y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.350

25247

\begin{align*} t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _exact, _linear, _homogeneous]]

0.037

25248

\begin{align*} t y^{\prime \prime }+\left (t +2\right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.299

25249

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.098

25250

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.103

25251

\begin{align*} 4 t^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.091

25252

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.101

25253

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.104

25254

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.205

25255

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.207

25256

\begin{align*} t y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.118

25257

\begin{align*} y^{\prime \prime }-2 \sec \left (t \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.120

25258

\begin{align*} t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

25259

\begin{align*} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.115

25260

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

25261

\begin{align*} \left (\cos \left (2 t \right )+1\right ) y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.551

25262

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+\left (t^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.106

25263

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.113

25264

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.112

25265

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.484

25266

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.394

25267

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

25268

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.881

25269

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.285

25270

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.465

25271

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

25272

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

25273

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=t^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.728

25274

\begin{align*} t y^{\prime \prime }-y^{\prime }&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.937

25275

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.628

25276

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

25277

\begin{align*} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.580

25278

\begin{align*} t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.717

25279

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=4 t^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.635

25280

\begin{align*} y^{\prime \prime }-y&=\frac {1}{1+{\mathrm e}^{-t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

25281

\begin{align*} y^{\prime \prime }+a^{2} y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.615

25282

\begin{align*} y^{\prime \prime }-a^{2} y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.595

25283

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

25284

\begin{align*} y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

25285

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 8 t & 2\le t <\infty \end {array}\right . \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.787

25286

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} {\mathrm e}^{t} & 0\le t <1 \\ {\mathrm e}^{2 t} & 1\le t <\infty \end {array}\right . \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.232

25287

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t <4 \\ 0 & 4\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.743

25288

\begin{align*} 3 y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.703

25289

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ -1+t & 1\le t <2 \\ 3-t & 2\le t <3 \\ 0 & 3\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.744

25290

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \\ y \left (\pi \right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.667

25291

\begin{align*} y^{\prime \prime }-y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

25292

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <2 \\ 4 & 2\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.667

25293

\begin{align*} y^{\prime }&=\left \{\begin {array}{cc} 0 & t =0 \\ \sin \left (\frac {1}{t}\right ) & \operatorname {otherwise} \end {array}\right . \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.652

25294

\begin{align*} y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ -3 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.419

25295

\begin{align*} y^{\prime }+5 y&=\left \{\begin {array}{cc} -5 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.646

25296

\begin{align*} y^{\prime }-3 y&=\left \{\begin {array}{cc} 0 & 0\le t <2 \\ 2 & 2\le t <3 \\ 0 & 3\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.951

25297

\begin{align*} y^{\prime }+2 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.732

25298

\begin{align*} y^{\prime }-4 y&=\left \{\begin {array}{cc} 12 \,{\mathrm e}^{t} & 0\le t <1 \\ 12 \,{\mathrm e} & 1\le t \end {array}\right . \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.577

25299

\begin{align*} 3 y+y^{\prime }&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.856

25300

\begin{align*} y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.578