| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.080 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.102 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.065 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.541 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.868 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.854 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\
y \left (1\right ) &= -1 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\
y \left (1\right ) &= a \\
y^{\prime }\left (1\right ) &= b \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.829 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }-4 y&=t^{4} \\
y \left (-1\right ) &= y_{1} \\
y^{\prime }\left (-1\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
4.988 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=\frac {t^{2}+1}{-t^{2}+1} \\
y \left (2\right ) &= y_{1} \\
y^{\prime }\left (2\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.228 |
|
| \begin{align*}
\sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= y_{1} \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
0.979 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+t^{2} y&=\cos \left (t \right ) \\
y \left (0\right ) &= y_{1} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✗ |
✗ |
23.261 |
|
| \begin{align*}
y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y&=0 \\
y \left (10\right ) &= y_{1} \\
y^{\prime }\left (10\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.871 |
|
| \begin{align*}
t \left (t^{2}-4\right ) y^{\prime \prime }+y&={\mathrm e}^{t} \\
y \left (1\right ) &= y_{1} \\
y^{\prime }\left (1\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
1.077 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
2.169 |
|
| \begin{align*}
y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y&=f \left (t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✗ | ✗ | ✗ | ✗ | 0.703 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.662 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.665 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.712 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }-5 t y^{\prime }+3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.985 |
|
| \begin{align*}
9 t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.823 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
4 t^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }-21 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }+9 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.828 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }+13 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.063 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.959 |
|
| \begin{align*}
4 t^{2} y^{\prime \prime }+y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✓ | 0.342 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\
y \left (1\right ) &= -3 \\
y^{\prime }\left (1\right ) &= 4 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.217 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
✗ |
✗ |
✗ |
2.287 |
|
| \begin{align*}
t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.253 |
|
| \begin{align*}
t y^{\prime \prime }+\left (t +1\right ) y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.167 |
|
| \begin{align*}
t y^{\prime \prime }+\left (2+4 t \right ) y^{\prime }+\left (4+4 t \right ) y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.225 |
|
| \begin{align*}
t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\
\end{align*} Using Laplace transform method. |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
t y^{\prime \prime }-4 y^{\prime }+t y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_Lienard] |
✓ |
✓ |
✓ |
✗ |
0.184 |
|
| \begin{align*}
t y^{\prime \prime }+\left (2 t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.225 |
|
| \begin{align*}
-t y^{\prime \prime }+\left (t -2\right ) y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.296 |
|
| \begin{align*}
-t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
t y^{\prime \prime }+\left (2-5 t \right ) y^{\prime }+\left (6 t -5\right ) y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.336 |
|
| \begin{align*}
t y^{\prime \prime }+2 y^{\prime }+9 t y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✗ |
✓ |
✓ |
✗ |
0.037 |
|
| \begin{align*}
t y^{\prime \prime }+\left (t +2\right ) y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.299 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.098 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.103 |
|
| \begin{align*}
4 t^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.091 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.101 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.104 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
t y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.118 |
|
| \begin{align*}
y^{\prime \prime }-2 \sec \left (t \right )^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.120 |
|
| \begin{align*}
t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.098 |
|
| \begin{align*}
y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.115 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.098 |
|
| \begin{align*}
\left (\cos \left (2 t \right )+1\right ) y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.551 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }+\left (t^{2}+2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| \begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.113 |
|
| \begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
0.112 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.881 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.465 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=t^{4} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.728 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }&=3 t^{2}-1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.937 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.628 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.491 |
|
| \begin{align*}
y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
11.580 |
|
| \begin{align*}
t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.717 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=4 t^{5} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.635 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{1+{\mathrm e}^{-t}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| \begin{align*}
y^{\prime \prime }-a^{2} y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 8 t & 2\le t <\infty \end {array}\right . \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✗ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} {\mathrm e}^{t} & 0\le t <1 \\ {\mathrm e}^{2 t} & 1\le t <\infty \end {array}\right . \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✗ |
✓ |
✓ |
0.232 |
|
| \begin{align*}
-y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t <4 \\ 0 & 4\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.743 |
|
| \begin{align*}
3 y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✗ |
✓ |
✗ |
0.703 |
|
| \begin{align*}
-y+y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ -1+t & 1\le t <2 \\ 3-t & 2\le t <3 \\ 0 & 3\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | [[_linear, ‘class A‘]] | ✓ | ✓ | ✓ | ✗ | 0.744 |
|
| \begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \\
y \left (\pi \right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.667 |
|
| \begin{align*}
y^{\prime \prime }-y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.703 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <2 \\ 4 & 2\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✗ |
✓ |
✗ |
0.667 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & t =0 \\ \sin \left (\frac {1}{t}\right ) & \operatorname {otherwise} \end {array}\right . \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
0.652 |
|
| \begin{align*}
y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ -3 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.419 |
|
| \begin{align*}
y^{\prime }+5 y&=\left \{\begin {array}{cc} -5 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.646 |
|
| \begin{align*}
y^{\prime }-3 y&=\left \{\begin {array}{cc} 0 & 0\le t <2 \\ 2 & 2\le t <3 \\ 0 & 3\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.951 |
|
| \begin{align*}
y^{\prime }+2 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.732 |
|
| \begin{align*}
y^{\prime }-4 y&=\left \{\begin {array}{cc} 12 \,{\mathrm e}^{t} & 0\le t <1 \\ 12 \,{\mathrm e} & 1\le t \end {array}\right . \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.577 |
|
| \begin{align*}
3 y+y^{\prime }&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.856 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -3\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.578 |
|